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Accurate information about the actual distribution of land surface types on the Earth’s surface is 
critical to many studies of global change. This Algorithm Theoretical Basis Document (ATBD) 
describes the approach taken to retrieve 17 land cover types specified by the Integrated Program 
Office (IPO) from data acquired by the Visible/Infrared Imager/Radiometer Suite (VIIRS) on an 
operational basis. This instrument is to be put in orbit early in the 21st century as a part of the 
National Polar-orbiting Operational Environmental Satellite System (NPOESS). 

The Surface Type Environmental Data Record (EDR) will be produced at the highest spatial 
resolution common to the VIIRS bands used (approximately 1 km). The operational EDR will be 
developed around a global 1 km VIIRS Quarterly Surface Types Intermediate Product (IP) which 
will be produced every three months from the accumulation of the previous 12 months of VIIRS 
data. During each successive three month period, the VIIRS Quarterly Surface Types IP will be 
re-delivered for every VIIRS orbit in conjunction with the current VIIRS Vegetation Index, 
Snow Cover, and Active Fires EDRs. The fraction of green vegetation cover present per cell will 
also be provided as a part of this EDR, further accommodating users who may require 
instantaneous information about the surface conditions associated with each surface type. 

The VIIRS Quarterly Surface Types algorithm will be run in a supervised classification mode, 
using global training data specifically tailored to the IPO surface types, and temporal metrics 
developed from 12 months of VIIRS visible, and infrared spectral band information. Training 
data will be screened through cross-validation using a decision tree classifier, and used to 
classify the remaining cells using the same decision tree classifier.  The Oblique Classifier (OC1) 
is selected as the decision tree classified.  A Quarterly Continuous Fields IP tailored after the 
Moderate Resolution Imaging Spectroradiometer (MODIS) continuous fields products will also 
be provided every three months using the same training data and metrics used in the production 
of the Quarterly Surface Types IP. Two additional quarterly products will be provided to assist 
the varied requirements of several other VIIRS EDRs, namely the VIIRS Surface Types-Biomes 
and the VIIRS Surface Types-Olson Intermediate Products (IPs). These will result from the 
aggregation of the Quarterly Surface Types IP into the appropriate surface types.  

Before launch, the algorithm has been, and will be, extensively tested and validated using several 
data sets. These include the Pathfinder AVHRR Land (PAL) global data set at 8 km resolution, 
the 1 km global land cover classification from the Earth Resources Observation Systems (EROS) 
Data Center (EDC), and both the 8 km and 1 km global land cover products from the Department 
of Geography at the University of Maryland (UMD). After launch, the algorithm will be 
continually evaluated against data from the Global Land Cover Test Sites (GLCTS) as well as 
data and products from MODIS and its network of validation sites.  

The algorithm presented in this ATBD culminates in the development of the first, fully-
automated, global 1-km surface type classification available worldwide, producing typing 
accuracies which greatly exceed threshold performance and move well beyond those that have 
been reported in the literature for similar products. This further highlights the strong commitment 
of this team to provide a flexible, robust, and accurate Surface Type algorithm that will 
ultimately satisfy the requirements of a wide variety of potential users. 
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1.0 INTRODUCTION 

1.1 PURPOSE 

The accurate representation of actual terrestrial surface types from regional to global scales is an 
important element for many applications, including land management, implementation of 
national and international policies related to bio-diversity and climate change, and global change 
studies as input to climate, biogeochemical, and/or hydrological models. Land cover 
classifications at the local to regional scales have a significant heritage in the remote sensing 
literature, dating back to studies utilizing data from Landsat’s Multi-Spectral Scanner (MSS) and 
Thematic Mapper (TM), and the Système Probatoire pour l’Observation de la Terre (SPOT), 
among others.  

More recently, continental and global scale land cover classifications at spatial resolutions 
ranging from 1 to 20 km have been performed from data acquired by the Advanced Very High 
Resolution Radiometer (AVHRR), flown onboard the National Oceanic and Atmospheric 
Administration’s NOAA-n series of satellite platforms. In the very near future, improved global 
land cover products will be available from the Moderate Resolution Imaging Spectroradiometer 
(MODIS), launched as a part of the National Aeronautics and Space Administration (NASA) 
Earth Observing System (EOS). 

In this Algorithm Theoretical Basis Document (ATBD) we present a general overview of the 
operational retrieval of global land cover information as a part of the Surface Type 
Environmental Data Record (EDR) and using data acquired by the future Visible/Infrared 
Imager/Radiometer Suite (VIIRS), one of the sensors to be included within the National Polar-
orbiting Operational Environmental Satellite System (NPOESS). 

1.2 SCOPE 

This document is similar in structure to the ATBDs produced for the EOS sensors, particularly 
those of the Multi-angle Imaging Spectroradiometer (MISR) (http://eospso.gsfc.nasa. 
gov/atbd/misrtables.html). Section 1 presents the purpose and scope of the document, as well as 
a list of other ATBDs that describe some key VIIRS inputs for this EDR. Section 2 provides 
background information through a review of the relevant literature, with a particular focus on the 
current applications of, and approaches to retrieve, land cover information. This section also 
presents an experiment overview that lists the requirements for the surface type retrievals as set 
forth by the Integrated Program Office (IPO) in the Sensor Requirements Document (SRD), 
some of the principal characteristics of the VIIRS instrument, and a brief algorithm retrieval 
strategy. The theoretical and mathematical descriptions of the candidate algorithms are outlined 
in Section 3, which also includes some discussion on the processing and implementation 
strategies. A listing of the principal assumptions and limitations of this EDR appears in Section 
4. Section 5 presents preliminary results produced from analyses performed during algorithm 
development. Section 6 lists the references cited in the text. Finally, Appendix A provides a pilot 
study that examines the potential for soil type retrievals from VIIRS. Although the retrieval of 
soil types is no longer a specified requirement for the Surface Type EDR, this study may provide 
future algorithm developers with the information necessary to classify broad soil types from 
future sensors such as VIIRS. 

http://eospso.gsfc.nasa.gov/atbd/mistables.html)
http://eospso.gsfc.nasa.gov/atbd/mistables.html)
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1.3 SUPPORTING VIIRS DOCUMENTATION 

Other referenced documents describing in detail several EDR retrievals and/or output products 
that will serve as input data to the Surface Type EDR are as follows. 

[V-1] Y2398VIIRS Surface Albedo ATBD 

[V-2] Y2400VIIRS Vegetation Index ATBD 

[V-3] Y2401VIIRS Snow Cover ATBD 

[V-4] Y2411VIIRS Surface Reflectance ATBD 

[V-5] Y2412VIIRS Cloud Mask ATBD 

[V-6] Y2468VIIRS Operations Concept Document 

[V-7] Y2469VIIRS Context Level Software Architecture 

[V-8] Y2470VIIRS Interface Control Document (ICD) 

[V-9] Y2474VIIRS Land Module Level Software Architecture 

[V-10] Y2483VIIRS Land Module Level Detailed Design 

[V-11] Y3236VIIRS Software Integration and Test Plan 

[V-12] Y3237VIIRS Algorithm Verification and Validation Plan 

[V-13] Y3257VIIRS Computer Resources Requirements Document 

[V-14] Y3261VIIRS RDR to SDR Conversion ATBD 

[V-15] Y3270VIIRS System Verification and Validation Plan 

[V-16] Y3279VIIRS Land Module Level Interface Control Document 

[V-17] Y3252VIIRS Active Fires ATBD 

[V-18] Y6635VIIRS Algorithm Software Development Plan 

[V-19] Y6661VIIRS Algorithm Software Maturity Assessment 

[V-20] Y7040VIIRS Algorithm/Data Processing Technical Report 

[V-21] Y7051VIIRS Earth Gridding ATBD 
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1.4 REVISIONS 

This is the fifth working version of this ATBD and is dated March 2002.  Version 4 of this 
ATBD was dated May 2001.  Version 3 was dated May 2000.  Version 2 was dated June 1999, 
and Version 1 was dated October 1998.  Version 0.2 was submitted for review by VIIRS Science 
team members in September 1998.  Version 0.1 was provided in July 1998 for internal review by 
several VIIRS land team members.  An ATBD summary was previously submitted in June 1998.  
The primary author of this Version 5 would like to thank Eric C. Brown de Colstoun and Shawn 
Miller for extensive work on previous versions of this document.  The authors are also greatly 
indebted to John Townshend, Ruth DeFries and Matt Hansen for extensive feedback and 
guidance in the Phase I development of this ATBD.  The current version differs from Version 4 
in the following sections:  

1) Section 3.2: The data flow diagrams (DFD) are refined with consideration to the 
practice of software coding; 

2) Section 3.3: Tables showing the interplay between this EDR and the other EDRs in 
the VIIRS system are added. 

3) Section 3.6.2: A commercially free computer software (OC1) of the decision tree 
classifier is introduced;  

For future versions of this document, the results of an inter-comparison between the 
commercially free decision tree classifier software OC1 and the purchased binary version of 
C5.0, and the results of testing the OC1 code with a test data set collected from MODIS for the 
Northeast China region will be incorporated. 
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2.0 BACKGROUND INFORMATION AND EXPERIMENT OVERVIEW 

2.1 THE UTILITY OF COARSE SCALE LAND COVER INFORMATION 

2.1.1 Global Modeling 

The need for contemporary, accurate, and repeatable global land cover classifications to support 
global change research arises for a variety of reasons. Present land cover conditions are needed 
to generate fields of land cover-dependent biophysical parameters used in many current General 
Circulation Models (GCMs). These models can simulate atmospheric circulation and climatic 
variables such as temperature, rainfall, humidity, and wind under various global warming 
scenarios and at a fairly coarse spatial scale (Dickinson et al., 1986; Sellers et al., 1994). Many 
current GCMs are now coupled with Land Surface Parameterization (LSP) models. These 
depend on fairly recent compilations of global land cover such as those of Olson et al. (1983), 
Matthews (1983), Wilson and Henderson-Sellers (1985), and DeFries and Townshend (1994a). 
They also provide the means by which to include the fine-scale heterogeneity of land processes 
within the coarser grid of the GCMs. The LSPs come from a realization that vegetation and soils 
play an important role, both in space and time, in regulating the exchange of energy, gases, and 
water vapor between the biosphere and the atmosphere and, as such, should be included in GCM 
simulations (Charney et al., 1975; Dickinson, 1983). The LSPs also serve to produce databases 
or look-up tables of land cover dependent albedo, surface roughness, evapotranspiration, and 
respiration. These parameters control, respectively, the transfer of energy, momentum, mass, and 
latent and sensible heat between the biosphere and the lower layers of the atmosphere (Sellers et 
al., 1994; Dickinson, 1995). 

Land cover information is also an important input to biogeochemical, ecosystem and 
hydrological models which track the cycling of carbon, nutrients, energy and water between the 
biosphere and the atmosphere (Melillo et al., 1993; Melillo, 1994; Running and Hunt, 1993; 
Nemani and Running, 1996). These models can simulate the response of terrestrial ecosystems to 
elevated CO2 concentrations and/or climate change. By quantifying the net primary production 
of these ecosystems, for example, they can help to identify the principal sources and sinks of 
carbon, and their temporal and spatial variability, as well as providing improved estimates of the 
size of various global carbon pools. Vegetation type information is important to these models. 
Various plant and tree species have varied mechanisms for photosynthesis and carbon 
assimilation, which can be affected by different stresses. All these factors can significantly alter 
estimates obtained from the models (Bonan, 1995). 

2.1.2 Land Cover Change 

Another important aspect of these modeling activities is the inclusion of land cover change or 
land cover conversion. Current estimates of the release of carbon to the atmosphere due to land 
cover change have large uncertainties associated with them (Houghton and Woodwell, 1989). 
These uncertainties have obvious implications to the accurate estimation of net carbon exchange 
between the biosphere and the atmosphere, and thus to studies of the global carbon cycle. Land 
cover change can significantly affect not only the carbon balance of the planet but also global 
bio-diversity, nutrient cycles, land degradation, as well as local and regional meteorology 
(Nemani and Running, 1995). Several authors have suggested that in fact, changes in land cover 
may be as significant, and perhaps more so, as those resulting from an increase in greenhouse 
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gases at regional and local scales (Shukla et al., 1990; Skole, 1994). There is currently large 
disagreement between estimates of the land cover conversion which has occurred in the past, is 
occurring now, and on the rates of change in land cover conversion (Skole and Tucker, 1993; 
Williams, 1994; Graetz, 1994). Clearly, if a series of consistent global land cover classifications 
can be generated for a period of several years, significant changes in global land cover over time, 
and their rates of change, could be quantitatively evaluated and many of the above uncertainties 
reduced. 

2.1.3 Better Maps and Estimates of Rates of Change 

Recent comparisons of widely available digital global land-cover classifications compiled from 
ground-based sources have noted large discrepancies, both in terms of the spatial distribution of 
different major land cover types and their actual areal extent over the globe (Townshend et al., 
1991; DeFries and Townshend, 1994a). This large disagreement in estimates may be due to the 
varied sources and methodologies used in compiling the different maps, but it is not uncommon. 
Other frequently used sources have also shown large differences in quantifying the amount of 
important cover types such as forests and grasslands of the world, for example (Williams, 1994; 
Graetz, 1994). It can be expected that updated global land cover classifications may also disagree 
because of differences in the land cover classifications schemes used, and the research activities 
they are designed to support (Hansen et al., 2000). However, updated classifications derived 
from satellite data should certainly reduce the uncertainties currently present. Land cover 
information is a significant input for the global change modeling activities noted above. If we 
cannot accurately reconcile the current distributions of the principal land cover types, then the 
tasks of closing the carbon cycle or simulating global change, for example, become that much 
more difficult. 

2.1.4 Support of Future Remote Sensing Missions 

Finally, the importance of land cover information to support current and ongoing global change 
research is also evident in the algorithm design for a variety of products to be generated from 
data acquired from new satellite remote sensing platforms such as MODIS (Running et al., 1994; 
Justice et al. 1998). The algorithms of Strahler et al. (1996a, 1999) are slated to produce 
improved land cover classifications, as well as land cover change products. The cloud masking 
algorithm of Ackerman et al. (1997) makes use of the land cover database of Olson et al. (1983), 
and that of Loveland et al. (1991) over North America, to provide cloud-free information for a 
great number of users downstream. The algorithm of Vermote (1996) utilizes land cover 
information generated using methodology developed by Running and Nemani (1995) to couple 
surface bidirectional effects with atmospheric scattering and absorption effects and thus improve 
his atmospheric correction results. The six biome classification approach of Running and 
Nemani (1995) is also used to produce look-up tables of parameters such as Leaf Area Index 
(LAI) and the Fraction of absorbed Photosynthetically Active Radiation (FPAR), which are then 
used to estimate Net Primary Productivity (NPP) and net photosynthesis (Running et al., 1996). 
Additionally, several VIIRS EDRs will make use of surface type information for their retrievals. 
Thus, the improved characterization of global land cover is a very important component to create 
new and improved data sets to study global change. 

While global change studies have been performed for quite some time, a study of global change 
which is truly “global” in scope can only be carried out through the use of satellite remote 
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sensing. These satellites provide a nearly continuous and quantitative record, at spatial scales 
ranging from the local, to the continental and global. Several decadal global data sets acquired 
from satellite remote sensing platforms have been compiled with a sufficient length to allow us 
to begin addressing some of the principal contemporary questions of global change, and to make 
the goal of improving global land cover information an achievable one (e.g., Los et al., 1994; 
Townshend, 1994; James and Kalluri, 1994). Future satellite systems, such as those planned for 
EOS and NPOESS, will continue to provide the much improved data needed to further enhance 
our knowledge of the Earth’s systems. The data will reduce the uncertainties which are currently 
associated with many areas of global change research, including land cover. 

There are many other areas where surface type information is important, and at times critical. 
These include urban planning, fire, disaster, and deforestation monitoring, national park 
delineation and assessment, environmental conservation, crop health and yield estimation, and 
military operations. In most of these cases, however, the spatial resolution needed for accurate 
assessments is much finer than that provided by meteorological satellites such as the AVHRR. 
Nevertheless, the data from these satellites can help to identify “hot spots” or broad areas where 
significant changes have occurred, or are occurring. These areas can then be targeted for further 
study using high resolution satellites such as TM or SPOT. 

2.2 APPROACHES FOR LAND COVER CLASSIFICATIONS 

2.2.1 Maps and Digital Maps Compiled from Ground-based Sources 

Historically, land cover classifications have been performed from ground surveys and/or other 
previous land maps and the mapping or delineation of land cover types has typically been made 
by reference to climate, physiognomic characteristics, floristic composition, or geographical 
location (Mueller-Dombois, 1984; Prentice, 1990). Several important points can be made about 
many of these classifications. First, they are subjective in that they reflect the biases of the 
compilers and the variety of sources they depend on. Second, they offer only qualitative 
information that is not very useful for input to computerized models of global change, which 
require quantitative surface information. Because of the varied methods, classification schemes, 
and age of sources, it is not always clear whether the maps reflect the potential or actual 
vegetation cover. An exception is the case of bioclimatic classification. Finally, because they 
have typically been reproduced on paper maps, updates or changes have been difficult to 
implement with any regularity. 

Several digital maps of global vegetation (e.g., Olson et al., 1983; Matthews, 1983; Wilson and 
Henderson-Sellers, 1985) have been compiled from a variety of ground-based sources, including 
maps and atlases. As previously noted, these have typically disagreed both in terms of the actual 
land cover present, as well as the areal extent of particular biomes (Townshend et al., 1991; 
DeFries and Townshend, 1994a). While the above databases have been used extensively to 
support climate change studies, they are somewhat influenced by the decisions and choices of the 
compilers, as well as the quality of their sources. 
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2.2.2 Global Land Cover Classifications with AVHRR Data 

Satellite remote sensing provides a synoptic view of the Earth and is able to perform consistent 
and repetitive quantitative measurements of many terrestrial processes at a variety of spatial 
scales. It has been, and is currently being, explored as an attractive alternative for actual global 
land cover classifications (Tucker, 1985; Townshend et al., 1987; Loveland et al., 1991; 
Loveland and Belward, 1997; Ehrlich and Lambin, 1996; Running et al., 1995, DeFries and 
Townshend, 1994b; DeFries et al., 1995a, 1998a; Hansen et al., 2000). 

The above studies used remotely sensed spectral data acquired from the Advanced Very High 
Resolution Radiometer (AVHRR) instrument flown onboard the NOAA-7 to 14 satellite series, 
coupled with their temporal evolution, to separate land cover classes at the continental and global 
scales. These classifications have typically been based on the variability as a function of cover 
type of the Normalized Difference Vegetation Index (NDVI). This index, defined as the 
difference of the solar energy reflected from surfaces in the near-infrared and red portions of the 
electromagnetic spectrum divided by their sum, is now recognized as a broad indicator of surface 
“greenness,” photosynthetic activity, and canopy phenology (Asrar et al., 1984; Justice et al., 
1985; Daughtry et al., 1992). 

The approach of Loveland et al. (1991), and Loveland and Belward (1997), is essentially based 
on utilizing 12 months of NDVI data with an unsupervised classification algorithm (Figure 1a). 
A large database of ancillary information is used as an aid for the human interpretation of the 
results. While these results are indeed impressive, and the variety of output products in all 
likelihood is very useful for the global change community, the accurate separation of a large 
number of land cover classes at the global scale from just 12 months of NDVI information is 
really not justified without heavy human involvement and over-reliance on the ancillary data.  

Other current techniques, such as those of DeFries et al. (1995a, 1998a), Running et al. (1995), 
Nemani and Running (1997), and Hansen et al. (2000), have also used the NDVI but in 
conjunction with information from the individual spectral bands of AVHRR, including those in 
the thermal wavelength region, to improve the performance of remotely sensed global land cover 
classifications. Ehrlich and Lambin (1996) and Lambin and Ehrlich (1996) have suggested that 
using a ratio of surface temperature to NDVI may improve continental scale land cover 
classifications beyond the use of just NDVI. Lloyd (1990) has proposed that metrics which 
describe the temporal evolution of NDVI for various cover types may provide additional 
information to resolve the different cover types. 

The approach developed and implemented by Running et al. (1995), and Nemani and Running 
(1997), in contrast to that of Loveland et al. (1991), is appealing because of its simplicity. In this 
approach static thresholds or decision rules for NDVI, land surface temperature, and the spectral 
data from AVHRR are derived at the global scale based on salient vegetation physiognomic 
characteristics such as leaf type and longevity. The decision rules are then used within a simple 
hierarchical classification scheme to yield six to eight biome types. The results generally 
replicate vegetation patterns at the continental to global scales and compare quite well with other 
available land cover data sets such as the North America classification of Loveland et al. (1991). 
However, the use of static thresholds, while robust when using data for a single year, cannot 
really be expected to yield consistently accurate results on all continents and for multi-year data 
sets, particularly within an operational scheme. The thresholds, if used in an operational setting, 



NPOESS/VIIRS Surface Type 

 SBRS Document #: Y2402 9 

would have to be continuously updated and/or modified to better reflect inter-annual variability 
and would not be easily implemented in an automated fashion. 

The work of DeFries et al. (1995a, 1998a) and Hansen et al. (2000) is a supervised classification 
approach which relies on a data set of carefully screened global training data and is nearly 
completely automated (Figure 1b). The approach is very flexible and appears to have the most 
promise to produce a primarily objective and operational global land cover classification. Their 
training data can be used at a variety of spatial resolutions, with a variety of classification 
algorithms, supplemented and refined with data from more land cover types. The training data 
can also be used for classification using remotely sensed input layers in the form of NDVI 
composites, spectral and temporal metrics (such as those suggested by Lloyd, 1990), and surface 
temperature-NDVI ratios (DeFries et al., 1995a, 1998a; Hansen et al., 1996, 2000). 

Methods to improve the accuracy of current or planned global land cover classifications attempt 
to capitalize on two types of pattern recognition algorithms that are fairly new to the field of 
remote sensing: decision trees and neural networks (DeFries et al., 1998a; Hansen et al., 1996, 
2000; Strahler et al., 1996a, 1999; Friedl and Brodley, 1997). In their simplest form, decision 
tree classifiers successively partition the input data into more and more homogeneous subsets by 
producing optimal rules or decisions, also called nodes, which maximize the information gained 
and thus minimize the error rates in the branches of the tree. Typically, the tree overfits the data 
and branches or leaves with higher error rates are then pruned to produce the final output. Each 
final leaf is then the result of following a set of mutually exclusive decision rules down the tree. 

Neural networks are another class of machine learning algorithms which are designed to 
intuitively resemble the human brain and can vary significantly in terms of complexity (several 
examples are given in Strahler et al. 1996a). The basic unit of the neural network is the 
perceptron, several of which can be networked together in one or more layers, with results from 
one perceptron feeding the calculations of another and vice versa. These calculations are 
typically based on the derivation and successive adjustment of weights as each new case is 
ingested and errors are detected. The final product is then produced from the set of weights that 
minimize the misclassification errors (Weiss and Kulikowski, 1991). 

Decision trees and neural networks are particularly well suited to global land cover applications 
because they are non-parametric, in that they do not make any implicit assumptions about 
Gaussian or normal distributions in the input data, as a statistical classifier such as a Maximum 
Likelihood Classifier (MLC) would. Both these techniques have in fact been shown to be much 
superior in classification accuracies to MLCs at a variety of spatial scales (Strahler et al., 1996a, 
1999; Friedl and Brodley, 1997), and with a variety of input data (DeFries et al., 1998a; Hansen 
et al., 1996). As has been shown in DeFries et al. (1998a), training data, and particularly global 
scale training data, tend towards non-gaussian distributions in multi-spectral space. Decision 
trees and neural networks are well suited to this type of problem and both algorithms tend to 
produce comparable classification accuracies when tested with the same remotely-sensed data 
inputs (Strahler et al. 1996a, 1999). However, decision trees are typically less computationally 
expensive than most neural networks (Weiss and Kulikowski 1991) and, by virtue of their 
hierarchical structure, also provide analysts and users with a simpler yet robust method to 
interpret, test, and analyze their results (Hansen et al., 1996; Friedl and Brodley, 1997). 
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a)  

b)  

Figure 1.  AVHRR global land cover classifications for 1992-1993. a) EDC 1km product 
with IGBP classes produced using an unsupervised clustering algorithm (Loveland and 
Belward 1997); b) University of Maryland 1km product derived from a supervised 
classification using a decision tree approach (Hansen et al. 2000). These are the only 
currently available global 1km land cover products and will serve as MODIS at-launch 
products. NOTE: Classification and color schemes are different for both a) and b). 
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Recently, a new paradigm for the classification of global land cover has been proposed (DeFries 
et al., 1995b, 1999). Linear mixture models have been used to generate continuous fields of 
vegetation characteristics, based on the specification of fairly “pure” end members of leaf type, 
or amount of woody material, for example (DeFries et al., 1995b, 1998b). Figure 2 shows an 
example of such a product, developed from 1km AVHRR data (DeFries et al. 1998b), where the 
value for each pixel corresponds to the percentage of tree cover within the cell. This product, 
along with a suite of other global continuous fields products, are slated to be produced from 
MODIS data (Townshend 1999). These products are found to more closely represent natural 
gradients in vegetation characteristics, as opposed to the classification of cover types into 
discrete values and in fact can potentially be more useful to global modelers than stratifications 
by land cover, as has previously been done. They can be, however, sensitive to the accurate 
description and/or purity of the end members, a problem that can be significant at coarse scales. 

2.2.3 Current Limitations 

The classification accuracies that have been reported in the literature range from 70 to 90 percent 
(DeFries et al., 1995a, 1998a; Hansen et al., 1996, 2000; Strahler et al, 1999; Friedl and Brodley, 
1997). However, these are typically obtained from a sample of unseen cases from the same data 
used to train the classifier. The accuracies could be expected to be lower when applied to truly 
independent validation data. The MODIS land cover product (Strahler et al., 1996a, 1999) is 
expected to have an achievable accuracy around 80 percent. The correct typing probability for 
the 1 km global land cover classification of Loveland and Belward (1997) was expected to reach 
85 percent but is in fact much lower than this at around 67 percent (Scepan 1999). 

The limitations to achieving higher recognition accuracies have been discussed in both DeFries 
et al. (1998a) and Hansen et al. (2000), particularly in terms of the data quality of the input 
AVHRR data. These data are found to sometimes include artifacts of processing, substantial 
radiometric noise and/or geolocation errors. Likewise, the limited spectral coverage of the 
AVHRR may not provide sufficient surface information to separate similar land cover types. In 
most cases, the limitations are simply due to the fact that many land cover classes, particularly at 
the coarse spatial scale, show more natural intra-class than inter-class variability. This problem 
can be exacerbated when kilometer scale pixels containing several land cover classes are 
considered, further suggesting the need for a linear unmixing approach. 

It should be noted that the NDVI is not directly related to surface or canopy structural or 
architectural attributes. Thus, land cover types which exhibit similar NDVI temporal signals, yet 
are structurally different, may still be difficult to separate. The NDVI, and the maximum value 
compositing approach used to produce monthly NDVI composites, are designed to reduce 
variations introduced by cloud cover, atmospheric and topographic effects, as well as the 
viewing and illumination geometries (Holben, 1986). However, the spectral and temporal signals 
used for land cover classifications may still be significantly contaminated by these effects. This 
affects both the overall accuracy of the classifications and the ability to satisfactorily 
discriminate between different cover types. 
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Figure 2.  Prototype AVHRR 1km product for 1992-1993 showing the percentage of tree 
cover at the global scale (DeFries et al. 1998b). The percent tree cover may be 
underestimated in areas with significant cloud cover throughout the year. This is a recent 
compilation showing products that will be available in the future from polar orbiting 
satellites such as MODIS and VIIRS. 

The use of additional metrics obtained from the individual spectral bands of AVHRR has been 
proposed by DeFries et al. (1995a, 1998b). This provides greater information content and is 
useful in enhancing the separation of similar cover types. However, due to the large scan angle of 
the instrument, both the atmospheric and sun-target-sensor geometry effects may become more 
significant here than when using an NDVI-only approach. 

Clearly, better corrections are needed for both atmospheric perturbations as well as those 
introduced by the non-Lambertian behavior of terrestrial surfaces. These corrections are used for 
MODIS and will be included in the NPOESS processing stream. The data available from EOS 
and NPOESS sensors such as MODIS and VIIRS will also be of significantly superior 
radiometric performance and stability. They will have greater spectral coverage, with much 
improved geolocation and registration. The substantial improvements in these data sets should 
provide improved land cover products beyond the accuracies that are currently achievable from 
AVHRR data. 

To our knowledge, the land cover products generated from VIIRS data will be the first fine scale 
land cover classifications that will be produced in an operational mode. Therefore, the approach 
taken needs to be robust and computationally efficient, yet fairly simplified from what is 
proposed for MODIS. For example, several studies have suggested that the bidirectional domain 
of remote sensing may contain surface information that could be used in improving land cover 
classifications (Abuelgasim et al., 1996; Wu et al., 1995; Walthall and Brown de Colstoun, 
1997). In fact, the MODIS land cover product may use BRDF products produced from combined 
MODIS and MISR data (Strahler et al., 1996b). Because of the computational load created by 
this approach, the need for two satellite sensors to obtain a sufficient sample of the surface 
BRDF, and the unproven benefits of BRDF information for classifications, this type of approach 
will not presently be implemented for the VIIRS Surface Type EDR. 
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2.3 EXPERIMENT OVERVIEW 

2.3.1 Surface Type EDR Requirements 

The SRD requirements for the Surface Type Environmental Data Record (EDR) demand that the 
VIIRS data and algorithm be able to classify the terrestrial surface for both moderate and fine 
horizontal cell sizes (HCS). The classification will be performed under clear conditions only, and 
within an operational computing environment. The land surface will be classified according to 
the 17 surface types specified by the International Geosphere Biosphere Programme (IGBP). The 
overall typing accuracy for these 17 land cover types should be at least 70 percent and the spatial 
resolution 20 km or better for the moderate HCS product and 1 km or better for the fine HCS 
product (Table 1). We expect that a typing accuracy of 90 percent will be achievable in the 
NPOESS era. 

Additionally, the SRD states that “Estimation of the percentage of vegetation cover per type in 
each cell is an objective.” The accuracy and precision of this vegetation cover objective 
requirement is 2 % and 0.1 %, respectively. This requirement implies being able to report the 
percentage cover of each IGBP class present within the cell to the specified accuracy and 
precision, and NOT the percentage of vegetation cover present in the cell. 

2.3.2 Instrument Characteristics 

The principal spectral, spatial, radiometric, and temporal characteristics of the VIIRS instrument 
are described in the VIIRS Sensor Specification. Of particular relevance to this EDR is the 
spectral coverage (Table 2), with VIIRS bands M4 (545-565 nm), I1 (600-680 nm), I2 (846-885) 
nm), I3 (1580-1640 nm) and M11 (2105-2155 nm) being the most critical in the visible/near and 
shortwave infrared portions of the spectrum. The Brightness Temperatures (BT) measured in 
VIIRS thermal channels I4 (3.55-3.93 µm), M15 (10.26-11.26 µm) and M16 (11.54-12.49 µm) 
will also be quite important. 

Land cover classifications have been successfully performed for quite some time using the five 
broad spectral bands of the AVHRR as well as the seven spectral bands of the LANDSAT 
Thematic Mapper (see Table 2). The MODIS land cover algorithm (Strahler et al., 1996a) is 
slated to use the seven “land” bands of MODIS to produce global land cover classifications to an 
expected 80 percent accuracy. VIIRS bands M4, I1, I2, I3, and M11 approximately correspond to 
MODIS bands 4, 1, 2, 6, and 7 and their center wavelengths are well within bands 2, 3, 4, 5, and 
7 of the LANDSAT TM. 

Table 1.  SRD Requirements for the Surface Type EDR 

Parameter No. Parameter Name Thresholds Objectives Specification 

 a) Horizontal Cell Size    

V40.6.4-1  1) Moderate, worst 
case 

20 km 1 km 1 km (global map) 

V40.6.4-2  2) Fine, at nadir 1 km 0.25 km 1 km (global map) 

V40.6.4-3 b) Horizontal Reporting 
Interval 

(TBD) (TBD) 1 km (global map) 
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Parameter No. Parameter Name Thresholds Objectives Specification 

V40.6.4-13 c) Horizontal Coverage Land Land Land 

 d) Measurement Range    

V40.6.4-6  1) Surface Type 17 IGBP classes 17 IGBP classes 17 IGBP classes 

V40.6.4-7  2) Vegetation Cover N/A 0 - 100% 0-100% 

V40.6.4-8 e) Measurement 
Accuracy (veg. cover) 

N/A 2% 20% 

V40.6.4-9 f) Measurement 
Precision (veg. cover) 

N/A 0.1% 10% 

 g) Correct Typing 
Probability (surface 
type) 

   

V40.6.4-14  1) Moderate, worst 
case 

70 % at (TBS) % 
confidence level 

(TBD) at (TBS) 
% confidence 
level 

88% 

V40.6.4-15  2) Fine, at nadir 70 % (TBD) 88% 

V40.6.4-12 k) Minimum Swath Width 
(All other EDR thresholds 
met) 

3000 km (TBR) (TBR) 3000 km 

Sensor Requirements Document, Section 3.2.1.1.1.16 
(TBD: To Be Determined, TBR: To Be Reviewed, IGBP: International Geosphere-Biosphere Programme) 

Figures 3, 4, and 5 show the spectra for several typical cover types in different regions of the 
electromagnetic spectrum. The figures also show the relative position of several of the nominal 
VIIRS spectral bands. As can be seen, the current spectral coverage for vegetation, soils and 
snow is quite good, capturing areas of optimal separability for these cover types. 

It should be stressed that the spectra for the vegetated cover types presented here are measured in 
the laboratory, on a single date, for piles of leaves or needles, and that natural cover types may 
show increased separability in these spectral regions because of canopy and other structural 
differences. Additionally, the change of these spectra with time (e.g., during a growing season) 
would tend to increase the differences at different times of the year. If the temporal evolution of 
the target were represented with temporal metrics such as those developed by DeFries et al. 
(1995, 1998a), these differences would be more apparent than seen in these figures. 
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Table 2. Intercomparison of the Spectral Bands of VIIRS, MODIS, AVHRR, and TM 

VIIRS MODIS Equivalent AVHRR Equivalent TM Equivalent 
  (AVHRR-3) (Landsat 4 & 5) 

VIIRS 
Band 

Spectral 
Range (um) 

Nadir 
HSR (m) 

Band Range HSR Band Range HSR Band Range HSR 

M1 0.402-0.422 750 8 0.405-0.420 1000       

M2 0.435-0.455 750 9 0.438-0.448 1000       

M3 0.478-0.498 750 10 0.483-0.493 1000    1 0.450-0.520 30 

M4 0.545-0.565 750 4 0.545-0.565 500    2 0.520-0.600 30 

I1 0.600-0.680 375 1 0.620-0.670 250 1 0.572-0.703 1100 3 0.630-0.690 30 

M5 0.662-0.682 750 1 0.620-0.670 250 1 0.572-0.703 1100 3 0.630-0.690 30 

M6 0.739-0.754 750 15 0.743-0.753 1000       

M7/I2 0.846-0.885 750/375 2 0.841-0.876 250 2 0.720-1.000 1100 4 0.760-0.900 30 

M8 1.230-1.250 750 5 SAME 500       

M9 1.371-1.386 750 26 1.360-1.390 1000       

M10/I3 1.580-1.640 750/375 6 1.628-1.652 500 3a SAME 1100 5 1.550-1.750 30 

M11 2.225-2.275 750 7 2.105-2.155 500    7 2.080-2.350 30 

I4 3.550-3.930 375 20 3.660-3.840 1000 3b SAME 1100    

M12 3.660-3.840 750 20 SAME 1000 3b 3.550-3.930 1100    

M13 3.973-4.128 750 21-23 3.929-4.080 1000       

M14 8.400-8.700 750 29 SAME 1000       

M15 10.26-11.26 750 31 10.78-11.28 1000 4 10.3-11.3 1100 6 10.40-12.50 120 

I5 10.50-12.40 375 32 11.77-12.27 1000 5 11.5-12.5 1100 7 10.40-12.50 120 

M16 11.54-12.49 750 32 11.77-12.27 1000 5 11.5-12.5 1100 8 10.40-12.50 120 
 
Although MODIS band 3 (459-479 nm) is not included in the nominal VIIRS band set, usage of 
VIIRS bands M2 (433-453 nm) and/or M3 (480-500 nm) instead could provide a substitute to 
this band because the land surface information content of these bands with regards to land cover 
is highly correlated to that of MODIS 3 (Figure 3). Also, VIIRS band M9 would seem to offer 
little additional information for land cover classification. It is suggested that the inclusion of 
band M8 (1230-1250 nm) (Figure 4) may provide additional information for both land cover 
characterization and albedo estimations, but it is not critical. The true “critical” bands for this 
EDR are VIIRS bands M4, I1, I2, I3, and M11, and obviously those needed for EDRs whose 
outputs are inputs to the surface type EDR.  M5, M7, and M10 can be used as alternatives to I1, 
I2, and I3, and in fact this may be the implementation strategy if future analyses support such a 
change. 
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Figure 3.  Laboratory measured spectra for several land cover types from 400 to 1000 nm. 
VIIRS nominal bands M1 through I2 are approximately shown as numbered boxes. 
(Spectra are available through the ASTER spectral library http://speclib.jpl.nasa.gov). 
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Figure 4.  Spectra for same cover types as Figure 3, but for wavelengths from 1 to 3.5 �m. 
VIIRS bands M9, I3, and M11 are shown as black boxes.  MODIS band 5 is shown as the 
box on the left (MOD5). 
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Figure 5.  Same as Figures 3 and 4, but for the thermal wavelength region.  
VIIRS bands I4, M15, and M16 are shown as well as the 8.55 �m band (M14). 

Studies have shown a potential for improving the discrimination of forest from non-forest types 
such as savanna by using AVHRR band 3 (Laporte et al., 1995; 1998). Although this band (I4 
(3.55-3.93 µm)) (Figure 5) is located in a spectral region containing both reflected solar and 
emitted terrestrial energy, these results suggest that this band should also be included in the 
classification. 

In the thermal region, a prominent feature from 8 to 10 microns can be easily seen for the brown 
sand spectrum (Figure 5). This spectral feature is related to the amount of quartz or sand within 
the soil (Salisbury and D’Aria, 1992a,b), and is not present in the spectrum of the gray clay that 
contains relatively little sand. It is hoped that the information contained within this band may 
thus be helpful in separating sandy soils, clay, and loam directly from the VIIRS data (see 
Appendix A). These are issues that are still under investigation and will need to be fully resolved 
before they can be included within an operational Surface Type algorithm.  

As can be seen, the spectral coverage of VIIRS with regards to this EDR is very good, and offers 
a good compromise between a hyperspectral type approach with many highly correlated bands, 
and the AVHRR. It also offers significant flexibility in the number of bands that can be used in 
the algorithm because individual spectral bands that are not critical to the successful performance 
of this EDR can still be included to provide additional land cover information. 

2.3.3 Retrieval Strategy 

The approach that will be taken to achieve threshold requirements, and to approach objective 
requirements, will be essentially a supervised classification approach, in that representative 
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training samples from the land cover classes will be used to train our decision tree classification 
algorithm. These training data have been developed by scientists at the University of Maryland, 
and used extensively to classify AVHRR data at spatial resolutions ranging from 1 km to 1 
degree (DeFries et al., 1995a, 1998a; Hansen et al., 1996, 2000). Other sets of training data were 
produced in-house from the 1 km AVHRR global land cover classification performed at the 
EROS Data Center (EDC) (Loveland and Belward, 1997). 

The operational Surface Type EDR, reported on each VIIRS swath, will be developed around a 
global 1 km VIIRS Quarterly Surface Types Intermediate Product (IP) which will be produced 
every three months, and which will meet the requirements for both the moderate and fine HCS 
products. Both the input IP (on the global grid) and the instantaneous EDR (on the swath) will 
include all 17 IGBP classes.  The EDR product adds current information about vegetation cover, 
snow, and fires.  For the IP, temporal metrics describing the temporal evolution of training data 
over the 12 previous months will be used for the classification, following the methodology 
developed at the continental scale by Tucker et al. (1985) and Townshend et al. (1987), and then 
extended to the global scale by DeFries et al. (1995a; 1998a) and Hansen et al. (2000). During 
each successive three month period, the VIIRS Quarterly Surface Types IP will be re-delivered 
for every VIIRS orbit in conjunction with the current VIIRS Vegetation Index, Snow 
Cover/Depth, and Active Fires EDRs. The fraction of green vegetation cover present per cell will 
also be provided as a part of this EDR, following Gutman and Ignatov (1998). This suite of 
products will provide users with current surface condition information associated with each cell 
and surface type of the Quarterly Surface Type product. This will eliminate the need to perform a 
global classification operationally, which would create much redundant information, as kilometer 
scale changes from one surface type to the next do not generally occur on a daily basis on a large 
area of the Earth, except for exceptional or catastrophic events such as very large fires, floods, or 
volcanic eruptions. 

A Quarterly Continuous Fields IP tailored after the MODIS continuous fields products 
(Townshend 1999) will also be produced every three months using the same metrics and training 
data used in the generation of the Quarterly Surface Types IP. The VIIRS Surface Types-Biomes 
and Olson IPs will also be produced every three months by aggregating the IGBP classes into the 
appropriate surface types. These products are to be used internally by several VIIRS EDRs. 

The Surface Type EDR is involved in the production and/or use of three additional, Earth-
gridded, intermediate products.  It requires as input the Monthly Vegetation Index IP (MVI), the 
Monthly Surface Reflectance IP (MSR), and the Monthly Brightness Temperature IP (MBT).  
These three products are required to produce the input metrics for the decision tree, and 
represent, respectively, the maximum value composite of cloud-free NDVI over a month, the 
average cloud-free surface reflectance over a month, and the average cloud-free TOA brightness 
temperature over a month. Three months of each are accumulated for use in generating the 
Quarterly Surface Types IP.  The generation of all three products is described in [V-21].   
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3.0 ALGORITHM DESCRIPTION 

3.1 SURFACE TYPES 

One of the greatest difficulties in current global land cover classification research is the lack of 
consensus regarding the classification scheme. Broad scale global modeling can be satisfied with 
the characterization of six to eight simple biome types such as forests, grasslands, and crops, but 
regional scale biogeography demands more information of species assemblages, forest/grassland 
mixtures, for example (Running et al., 1995). Difficulties also exist in reconciling the output data 
needs with the limitations of remotely sensed data, in other words, designing a classification 
scheme whose land cover classes, and number of classes, are potentially retrievable from coarse 
scale spectral and/or temporal data. The EOS equivalent of the VIIRS Surface Type EDR, 
MODIS Product MOD-12, is currently slated to use the 17-type classification scheme proposed 
by the International Geosphere-Biosphere Programme (IGBP). The scheme is currently used in 
several well-known global land cover classifications, notably Loveland and Belward (1997). 

Table 3 shows the definitions for the 17 IGBP classes required for this EDR as available from 
the MODIS Land Cover Product ATBD (Strahler et al., 1996a). These classes encompass 11 
classes of natural vegetation (classes 1 to 11 in Table 3), 3 classes of developed and mosaic lands 
(Classes 12, 13 and 14), and 3 classes of non-vegetated land (Classes 15, 16, and 17). This 
classification scheme is generally perceived to be achievable for both current and future remote 
sensing systems. However, as discussed by Loveland et al. (1999), the IGBP classification 
scheme still has some shortcomings. For example, a class for tundra ecosystems is not included, 
implying that these surface types will be included within one or more of the IGBP classes. 
Second, under the current definition of the Forest classes and the Wetlands classes, large portions 
of the Wetlands class could be contained within the different forest classes, considering that 
many Swamps have a canopy cover >60%. In addition, current classifications (Hansen et al., 
2000; Loveland and Belward, 1997) use static vector data from the Digital Chart of the World 
(DCW) to delineate urban areas, principally because these areas cannot effectively be classified 
from daytime, remotely sensed data. Cities comprise a mosaic of man-made materials, water, and 
perennial and annual vegetation, the distribution of which varies both within, and across, 
continents. Whether improved satellite data will allow the direct retrieval of urban areas at a 
global scale is not yet known. Finally, the IGBP Natural Vegetation/Croplands Mosaics class 
may not be useful for coarse scale modeling activities because these models typically require 
aggregated surface type information at coarser scales than 1 km. It may in fact cause problems 
when this aggregation is performed if this class is the dominant class within a coarser cell.  

The previous version of this ATBD had presented a modified classification scheme based on the 
work of DeFries et al. (1998) and Hansen et al. (2000), the classes required by the IPO in the 
previous version of the SRD, and the IGBP classes. This scheme was also presented during our 
land TIMs. In any case, we feel that the IGBP classification scheme is mostly correct and 
encompasses surface types that should be retrievable from future operational remote sensing 
platforms, as it has successfully been implemented using AVHRR data. Better future data with 
more spectral bands may allow more classes than the current 17 to be retrieved. However, we 
caution the reader that, particularly in light of the limitations of the AVHRR data listed in section 
2.2.3, classification schemes that present the retrieval of many more classes than the IGBP 
scheme, or who claim to be able to separate many sub-classes from each IGBP class from 
AVHRR data (e.g. Muchoney et al. 2000), should be viewed with a certain degree of skepticism. 
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Table 3.  IGBP surface type definitions  (from Strahler et al., 1996a). 

IGBP Surface Type Names Definition 

1) Evergreen Needleleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height 
exceeding 2 meters. Almost all trees remain green all year. Canopy is never without 
green foliage. 

2) Evergreen Broadleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height 
exceeding 2 meters. Almost all trees and shrubs remain green year round. Canopy is 
never without green foliage. 

3) Deciduous Needleleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height 
exceeding 2 meters. Consists of seasonal needleleaf tree communities with an annual 
cycle of leaf-on and leaf-off periods. 

4) Deciduous Broadleaf Forests Lands dominated by woody vegetation with a percent cover >60% and height 
exceeding 2 meters. Consists of broadleaf tree communities with an annual cycle of 
leaf-on and leaf-off periods. 

5) Mixed Forests Lands dominated by trees with a percent cover >60% and height exceeding 2 meters. 
Consists of tree communities with interspersed mixtures or mosaics of the other four 
forest types. None of the forest types exceeds 60% of landscape. 

6) Closed Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover 
>60%. The shrub foliage can be either evergreen or deciduous. 

7) Open Shrublands Lands with woody vegetation less than 2 meters tall and with shrub canopy cover 
between 10-60%. The shrub foliage can be either evergreen or deciduous. 

8) Woody Savannas Lands with herbaceous and other understory systems, and with forest canopy cover 
between 30-60%. The forest cover height exceeds 2 meters. 

9) Savannas Lands with herbaceous and other understory systems, and with forest canopy cover 
between 10-30%. The forest cover height exceeds 2 meters.. 

10) Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less than 10%. 

11) Permanent Wetlands Lands with a permanent mixture of water and herbaceous or woody vegetation. The 
vegetation can be present in either salt, brackish, or fresh water. 

12) Croplands Lands covered with temporary crops followed by harvest and a bare soil period (e.g., 
single and multiple cropping systems). Note that perennial woody crops will be 
classified as the appropriate forest or shrub land cover type. 

13) Urban and Built-Up Lands Lands covered by buildings and other man-made structures. 

14) Cropland/Natural Vegetation 
Mosaics 

Lands with a mosaic of croplands, forests, shrubland, and grasslands in which no one 
component comprises more than 60% of the landscape. 

15) Snow and Ice Lands under snow/ice cover throughout the year. 

16) Barren Lands with exposed soil, sand, rocks, or snow and never has more than 10% vegetated 
cover during any time of the year. 

17) Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or salt-water bodies. 

 

Two additional surface type products will be made available for the processing of different 
VIIRS EDRs. The VIIRS Surface Type-Olson IP will contain the following five classes: Water, 
Desert, Vegetated Land, Snow/Ice, and Mountains. The VIIRS Surface Types-Biomes IP will 
contain six classes after Running and Nemani (1996). These will be: Grasses and Cereal Crops, 
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Shrubs, Savannas, Broadleaf Forests, Needleleaf Forests, and Broadleaf Crops. This set will 
likely be extended in to include bare soil, water, and snow, due to the global requirements of the 
Surface Reflectance IP [V-4]. The above classes will be obtained by aggregating the appropriate 
IGBP classes. The Mountains class will be produced through the use of a Digital Elevation 
Model (DEM). 

3.2 PROCESSING OUTLINE 

The processing chain for both the VIIRS Surface Type EDR and the VIIRS Quarterly Surface 
Types IP are illustrated in Figures 6 and 7, respectively. 
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Figure 6.  Flow diagram showing the processing chain for the VIIRS Surface Type EDR.
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Figure 7.  Flow diagram showing the processing flow for the 
VIIRS Quarterly Surface Types IP. 

 

3.3 ALGORITHM INPUTS  

3.3.1 VIIRS Data 

The Surface Type EDR (Figure 6) will depend in large part on the output of the Quarterly 
Surface Types IP, as it will continuously re-deliver the most current Quarterly Surface Types 
product for a three month period, and for each VIIRS orbit. However, the EDR will also 
integrate the current VIIRS Vegetation Index [V-2], Snow Cover [V-3], and Active Fires [V-17] 
EDRs. A sub-module of the algorithm will calculate the green vegetation fraction in any given 
cell from the current VIIRS Vegetation Index (VI) EDR coupled with the Maximum, Minimum, 
and Amplitude (i.e. Max.–Min.) VI for the same cell as output from the Quarterly Surface Types 
IP from the 12 previous months of VIIRS VI data. Several indices are being generated through 
the VI EDR and the usage of indices such as the Soil Adjusted Vegetation Index (SAVI) (Huete, 
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1988) will also be explored beyond the currently planned NDVI and EVI.  A summary of the 
input data for the VIIRS Surface Types EDR is listed in Table 4.  The reader is directed to [V-2] 
for more current and complete details.  

The inputs for the VIIRS Quarterly Surface Types IP (Figure 7) will be Earth-gridded, cloud-
masked, atmospherically corrected, and monthly-composited surface reflectances for VIIRS 
bands M4, I1, I2, I3, and M11. These will be provided as IPs from the Earth Gridding module 
through the Atmospheric Correction over Land processing chain. The gridded monthly top-of-
atmosphere (TOA) brightness temperatures from VIIRS thermal bands I4, M14, M15, and M16 
will also be used for the generation of the product because they provide increased discriminatory 
power between several land cover types (Figure 5). The earth gridded monthly vegetation index 
IP will also be ingested, using the NDVI as the primary vegetation index. 

Temporal metrics describing the maximum, minimum, mean and amplitude for the input data 
layers (surface reflectances, TOA BTs, NDVI) will be produced from 12 maximum value 
monthly NDVI composites and serve as input to the classifiers, as suggested by DeFries et al. 
(1998a).  The use of additional metrics such as those used by Hansen et al. (2000) is being 
explored at this time for future implementation.  The same metrics will be used to produce both 
the Quarterly Surface Types IP as well as the Quarterly Continuous Fields IP.  

3.3.2 Auxiliary Data 

Auxiliary data are data sets that are produced outside of the NPOESS (i.e. VIIRS and Non-
VIIRS instruments) processing streams. Several auxiliary data sets will be needed for the 
successful operation of this EDR. Products that will be needed at the time of launch will be the 
MODIS land/sea mask and an at-launch land cover data set. These will be obtained from a 
combination of the University of Maryland product (DeFries et al., 1995; 1998b; Hansen et al. 
2000), an updated EDC classification (Loveland and Belward, 1997), and/or any available 
MODIS classifications. 

The training data will be obtained from updated 1 km training areas from the work of DeFries et 
al. (1995a, 1998a) and Hansen et al. (2000). These training data will be supplemented by 
training data produced in-house from the EDC 1 km classification or other sources. These 
training data will be representative of the 17 IGBP land cover types (Table 3). 

Because soil types are no longer required, this EDR will no longer require the use of the digital 
soil map of the world produced by the Food and Agriculture Organization (FAO) in Rome (FAO, 
1995). This map has been compiled from exhaustive field surveys and maps over the past 30 
years and is the only currently available source of digital soil information at a coarse spatial 
scale. The resolution of this map is currently approximately 4 km. Other users may still find this 
map useful. 

3.3.3 Data Interplay between this EDR and other VIIRS EDRs 

Table 6 lists the passes where the VIIRS Surface Types EDR takes input data from and sends 
output data to.  Similarly, Table 7 lists the data interplay between the Quarterly Surface Types 
IPs and other VIIS units. 
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Table 4.  Indexing of inputs and interim data flows for Surface Types EDR 

Name Type Description 

VIIRS Snow Cover 
Depth EDR 

Input Current VIIRS Snow Cover/Depth EDR 

VIIRS Active Fires ARR Input Current VIIRS Active Fires ARR 

VIIRS Vegetation Index 
EDR 

Input Current VIIRS Vegetation Index EDR 

VIIRS Surface 
Reflectance IP 

Input Directional surface reflectance in VIIRS bands M1, 
M2, M3, M4, M5, M7, M8, M10, and M11, along with 
associated pixel-level Land Quality Flags 

Past Yearly Values of 
Max., Min.of VI 

Input Maximum and minimum for NDVI from previous 
years of gridded data (generated in post-processing 
when Quarterly Surface Types IP is created) 

VIIRS Quarterly Surface 
Types IP 

Input Most recent quarterly surface types product with full 
IGBP classes 

8-bit Surface Type 
Flags 

Interim Data Flow 8 bits indicating general surface characteristics; first 
five bits indicate IGBP surface type (one of 17 
values), sixth bit is snow/no snow, seventh bit is 
vegetation/no vegetation, eight bit is fire/no fire 

Vegetation Fraction Interim Data Flow Percent vegetation cover within the cell 

 

Table 5.  Indexing of inputs for Quarterly Surface Types IPs 

Name Type Description 

VIIRS Gridded Monthly 
Surface Reflectance IP 

Input VIIRS Gridded Monthly Surface Reflectance IP for 
the past year 

VIIRS Gridded Monthly 
Vegetation Index IP 

Input VIIRS Gridded Monthly Vegetation Index IP for the 
past year 

VIIRS Gridded Monthly 
Brightness 
Temperatures IP 

Input VIIRS Gridded Monthly Brightness Temperatures IP 
for the past year 

Training Layers Input Predefined areas of the 17 IGBP surface types 
obtained the updated 1km global training areas 
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Table 6.  Data Interplay between VIIRS Surface Types EDR and Other VIIRS Units 

Data Name Type From/TO and Through 

Snow Cover  Input  From VIIRS Snow Cover EDR through Snow/Ice 
Module to Land Module Interface 

Fires Locations Input From VIIRS Active Fires ARR within the Land 
Module 

Vegetation Indices Input From VIIRS VI EDR within the Land Modue 

Surface Reflectance Input From VIIRS Surface Reflectance IP within the Land 
Module 

Past Yearly Values of 
Max., Min.of VI 

Input From VIIRS VI EDR within the Land Module 

VIIRS Quarterly Surface 
Types 

Input From VIIRS Quarterly Surface Types IPs through 
Gridding Module to Land Module Interface 

VIIRS Surface Types Output To Land Surface Temperature EDR through Land to 
Surface Temperature Module Interface 

 

Table 7.  Data Interplay between VIIRS Quarterly Surface Types IPs and Other VIIRS Units 

Data Name Type From/TO and Through 

Gridded Monthly Surface 
Reflectance 

Input From VIIRS Gridded Monthly Surface Reflectance IP for 
the past year 

Gridded Monthly Vegetation 
Index 

Input From VIIRS Gridded Monthly Vegetation Index IP for the 
past year 

Gridded Monthly Brightness 
Temp.  

Input From VIIRS Gridded Monthly Brightness Temperatures IP 
for the past year 

Training Layers Input From areas map of 17 IGBP surface types  

Quarterly Surface Types Output To Surface Types EDR within Land Module 

VIIRS Surface Types-Biomes Output To Snow/Ice Module 

VIIRS Surface Types-Olson Output To Surface Temp. Module 
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3.4 THEORETICAL DESCRIPTION OF THE ALGORITHM 

3.4.1 General Description of the Algorithm 

The general approach taken for the Surface Type EDR is to use the best possible global land 
cover classification at all times. This high accuracy can only be achieved by using a temporal 
accumulation of VIIRS products. By coupling our Quarterly Surface Types IP with the current 
VIIRS Vegetation Index, Snow Cover, and Active Fires, and by providing the current green 
vegetation fraction, we will provide a product with the highest possible quality, but which is also 
updated in real-time with actual data. 

Land Cover classifications are based on the assumption that different cover types will exhibit 
different patterns of reflected or emitted energy as a function of wavelength and/or time, or 
signatures, and this forms the basis for their automated recognition (Richards, 1983). The VIIRS 
Quarterly Surface Types IP will be produced in a so-called “supervised” classification mode. In a 
supervised land cover classification, regions with particular cover types are known a priori and 
are sampled so as to be representative of the same cover types throughout an image or region. 
The spectral, spatial, and temporal behavior of the remotely sensed data within these training 
areas can then be exploited to create statistical patterns within a variety of classifiers. These 
patterns are used to label the remaining samples into the appropriate surface type category. By 
utilizing carefully selected training data from DeFries et al (1995a; 1998a) and Hansen et al. 
(2000), augmented by our own at the global scale, our approach will be supervised. At the global 
scale, we will exploit the spectral and temporal information to separate the 17 IGBP surface 
types. 

The Quarterly Surface Type product will be based on gridded, time-composited products at 1 km 
resolution and will be produced and updated every three months. The accumulation of monthly 
composites will allow the exploitation of the temporal domain of remote sensing to enhance the 
separability of classes that would otherwise have similar spectral and/or NDVI signals. To 
facilitate data handling and processing of this large data set, the 12 consecutive monthly 
composites for the NDVI, and the Surface Reflectance and BTs in the VIIRS bands will be 
combined to produce “metrics” layers representing maximum, minimum, mean, and amplitudes 
for each land pixel and for each input parameter. The resulting metrics will then be input into the 
classifier. 

The nominal classifier to be used in the production of the Quarterly Surface Types IP will be the 
C5.0 Decision Tree (DT) algorithm produced by Quinlan (1993). The boosting option will be 
used along with standard pruning parameters available within the C5.0 software. Cross-
validation will be performed using several random samplings of the training data in order to 
provide optimal training data from which to perform the classification (Friedl and Brodley, 
1997). The training data will be split into 80% training and 20% testing samples (after Strahler et 
al. 1999) and used to produce a boosted decision tree. This tree will be subsequently applied to 
all the remaining VIIRS metrics to produce the IP. 

Alternatively, a hybrid classification scheme can be implemented. This would employ a 
combination of a DT classifier and a Learning Vector Quantization (LVQ) neural network 
classifier to potentially optimize the land cover class separation. Training pixels will be input 
into each of these algorithms successively, and the pixels classified correctly by each will be 
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retained. This combined training data set will then be used within the decision tree classifier. 
This type of approach is still being developed and would be preferred should the results provide 
an improvement in typing accuracy. 

In order to approach these objective requirements, we will implement linear mixture models 
within the VIIRS processing stream for the alternate production of a suite of global continuous 
fields products similar to that shown in Figure 2 and described in Townshend et al. (1999). The 
processing flow for these products is shown in Figure 7.  This process will build on MODIS 
heritage, and should enhance that heritage through lessons learned. 

3.4.2 Mathematical Description of the Algorithm 

3.4.2.1 Optimized-Learning-Rate Learning Vector Quantization (LVQ) Algorithm 

In the Learning Vector Quantization (LVQ) approach, a series of so-called “codebook” vectors 
are assigned to each land cover class Sj. Then the codebook vector mi which minimizes the 
Euclidean distance to any input sample x, is found iteratively (Kohonen, 1997). In the 
Optimized-Learning-Rate LVQ (OLVQ) used here, the basic LVQ algorithm is modified so that 
a learning rate factor αi(t) is assigned to each mi vector. The learning process follows a reward-
punishment scheme and is summarized by the following set of equations: 

If x is classified correctly (i.e., reinforce/reward): 

[ ])()()()()1( tmtxttmtm cccc −+=+ α  (1a) 

If x is classified incorrectly (i.e., extinguish/punish): 

[ ])()()()()1( tmtxttmtm cccc −−=+ α  (1b) 

and: 

)()1( tmtm ii =+ for i≠c (1c) 

where: 

{ }i
i

mxc −= minarg  (2) 

c represents the index of the nearest mi to x, and the 0 < αi(t) < 1 and are made to decrease with 
time t. Equations 1a, 1b, and 1c can be re-expressed in the form: 

[ ] )()()()()()(1)1( txttstmttstm cccc αα +−=+  (3) 

where s(t) = 1 if the classification is correct and s(t) = -1 if it is not. 

According to Kohonen (1997), Equation 3 contains “trace” elements of x(t) in the last term, as 
well as of x(t’), t’=1, 2,…, t-1, from previous iterations, through mc(t). At each learning step, the 
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last trace x(t) is scaled down by a factor αc(t) and, similarly, each trace x(t-1) is scaled down by a 
factor [1-s(t)αc(t)]αc(t-1). He further stipulates that both these scalings must be equal, i.e.: 

[ ] )1()()(1)( −−= tttst ccc ααα  (4) 

If this condition holds true for all t, the αi(t) will then be determined optimally by the following 
recursion: 
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αα  (5) 

3.4.2.2 Decision Tree Algorithm 

A decision tree partitions any training data set T with land cover classes Cj, for example, into 
more and more homogeneous subsets called nodes and leaves. In earlier decision tree algorithms, 
this partitioning was performed by maximizing the gain criterion, a measure of the information 
gained by sub-dividing T with a test X, and defined in Quinlan (1993) as: 

(T)info-info(T)gain(X) X=  (6) 

where: 
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is a weighted sum over n subsets produced from the partitioning of T according to test X, and |T| 
is the total number of cases in T. Here: 
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where info(T) essentially represents the average amount of information needed to correctly 
identify a land cover class in T, and p(Cj | T) is the probability that a particular case from a set of 
cases T belongs to class Cj. 

In contrast, the C5.0 decision tree algorithm uses a test that maximizes the gain ratio criterion, 
which “expresses the proportion of information generated by the split that is useful, i.e., that 
appears useful for classification” (Quinlan, 1993, p. 23): 

info(X)lit gain(X)/spratio(X)gain =  (9) 

where: 
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This last equation is similar to Equation 8, except that it represents the additional information 
that is potentially gained from sub-dividing the training set into n subsets. The gain ratio criterion 
is used to rectify a bias of the gain criterion in favor of tests with numerous outcomes (Quinlan, 
1993). 

3.4.2.3 Linear Mixture Model 

The linear mixture model to be used in the production of the VIIRS Quarterly Continuous Fields 
IP is described in full detail in Section 4 of Townshend (1999). It is based on the assumption that 
the reflectance of a cell is the sum of the reflectances of each component making up the cell, 
weighted by its respective areal coverage within the cell. This is described mathematically as: 

∑
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+=
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1

          (11) 

where Ri is the reflectance of the cell in spectral band I, rij is the reflectance of cell component j 
in spectral band i, xj is the proportion of the cell that is covered by cover j, ei is the error term, 
and N is the total number of components within the cell. The model further specifies that the sum 
of all the xj terms should add up to unity. 

3.4.2.4 Green Vegetation Fraction 

The green vegetation fraction per cell that will be continuously provided with the Surface Type 
EDR is based on the work of Gutman and Ignatov (1998), and developed for use with the NOAA 
GVI product. The model that was chosen for their work is described as: 

)/()( oog NDVINDVINDVINDVIf −−= ∞       (12) 

where fg is the fractional green vegetation cover within a specific cell, NDVIo is the minimum 
NDVI for desert classes, NDVI∞ is the maximum NDVI for evergreen forest classes, and NDVI 
is the current NDVI value for the cell. fg is constrained to the interval 0-1. 

3.4.3 Archived Algorithm Output 

The VIIRS Quarterly Surface Types IP, the VIIRS Surface Types-Olson IP, and the VIIRS 
Surface Types-Biomes IP will need to be archived for successive three month periods until such 
time as new quarterly products can be produced. The maximum, minimum and amplitude in VI 
will also be stored for use in the green vegetation fraction calculations, and will also be updated 
each quarter. Training pixels correctly and incorrectly classified will be saved for future analyses 
and algorithm refinement. Areas with significant land cover changes will be flagged. Several 
quality flags describing product quality will also be included in the output. 

3.4.4 Variance and Uncertainty Estimates 

The following is a list of potential sources of error that may be expanded upon in the future 
through a sensitivity analysis: 

• Errors from EDRs upstream (e.g. VI) 
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• Bidirectional Reflectance Distribution Function (BRDF) related errors 

• Topography 

• Shadows 

• Sub-pixel clouds 

• Atmospheric correction errors 

• Undetected land cover changes in training data 

• Training data mis-labeling 

• Mis-registration 

• Sensor Drift and Calibration 

• End members in mixture models 

• Mixed pixels 

 

3.5 ALGORITHM SENSITIVITY STUDIES 

It is extremely difficult to accurately simulate global, temporally composited monthly spectral or 
thermal data, even with the relatively simple configuration of the AVHRR. This would imply 
simulating not only the spectral variability of cover types but also being able to realistically 
simulate the temporal evolution and temporal variability of these cover types globally. Such a 
simulation would test not only the current scientific understanding of coarse scale surface type 
patterns but also the current computational capabilities of many agencies and/or research groups. 
Nonetheless, that work is currently ongoing.  

In sections 3.5.1 through 3.5.5 we present simulations using single date TM scenes and only the 
spectral information to classify various surface types. These sections are not intended to provide 
an error budget for this EDR because none can be realistically produced as previously described. 
However, these sections are useful to better understand the contributions of the principal sources 
of error to the selected classifiers, and can give indications of the relative magnitude or 
importance of each error term in the classification process. The sections also illustrate how the 
different classifiers respond to different kinds of error sources and thus may be used as an 
indicator of their potential robustness for future operational applications. 

3.5.1 Radiometric Noise and Stability 

The Quarterly Surface Type IP will be produced from time-composited data that will further 
reduce any important variability due to sensor noise (Holben, 1986). In any case, it is expected 
that the natural variability in the reflectance of each cover type at a coarse scale should be much 
greater than that introduced by sensor noise. Moreover, the decision tree is not particularly 
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affected by noisy data because each pixel is classified and then noisy branches of the tree can be 
identified and pruned (Quinlan, 1993).  

Because this EDR depends on temporal information, the accurate calibration and long-term 
stability of the sensor are important issues. However, techniques currently exist to correct the 
sensor drift in the bands of the AVHRR to provide internally consistent global data (Holben et 
al., 1990; Los et al., 1994). It is expected that these techniques could be tailored to VIIRS in the 
eventuality of any sensor drift. Also, these techniques have been successfully applied to generate 
a global NDVI data set from three different AVHRR sensors (Los et al., 1994). Again, 
calibration and long-term stability effects will be more significant on the VI EDR than the land 
cover EDR (Los et al., 1994; DeFries and Townshend, 1994b). 

 

3.5.2 Band-to-Band Registration 

A misregistration between spectral bands on different instrument focal planes should principally 
affect the regional land cover classification. This classification will use instantaneous spectral 
information, principally from VIIRS bands M4, I1, I2, I3, and M11. A sub-pixel shift in any of 
these bands may also introduce some variability to the training data. Thus, it could affect the 
overall classification accuracy, particularly in heterogeneous areas. This shift, however, would 
need to be on the order of 0.2 pixels or greater to have a significant effect (Townshend et al., 
1992).  

For the band-to-band registration analysis we used the same simulated TM scene for the 
Washington, D.C. area used in Section 3.5.1. We shifted VIIRS bands I3 and M11 with respect 
to bands M1 through I2 to simulate a misregistration between spectral bands in different focal 
planes. The shifting was done in both the x and y directions for 2, 4, and 6 TM pixels of 30 m. 
This simulated a misregistration of approximately 15, 31, and 46 percent, respectively, of a 
nominal 390 m VIIRS pixel. After shifting, the spectral data, as well as the classification 
product, were degraded to 390 m spatial resolution by averaging 13 TM pixels. The subsequent 
files were used in the C5.0 software with a 10-fold cross-validation approach. This means using 
10 percent of the data for training, and testing the remaining 90 percent for 10 different decision 
trees. The original mean accuracy for the tree, produced from the unshifted data, was 87.1 
percent. The accuracies for the data which were shifted 2, 4, and 6 pixels were, respectively 85.5 
percent, 85.5 percent, and 85.4 percent, showing that, as expected, the decision tree algorithm is 
fairly “resistant” to band-to-band misregistration. It would be expected that the LVQ neural 
network would show similar results because they are both learning machine algorithms. This 
means that the algorithms learn patterns from training data, no matter how noisy or 
misregistered, and attempt to classify unseen cases based on these previously defined patterns. 
This also implies it would be very difficult to tell whether spectral bands are misaligned from the 
results of either algorithm. However, based on this analysis, we feel that if the requirements for 
this parameter are met for the VI EDR, Surface Reflectance IP, and Surface Albedo EDR, they 
should also be met for the Surface Type EDR. 

3.5.3 Mixed Pixels 
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Because of the intrinsic spectral similarity of some land cover types it is possible to still have 
large misclassifications errors with data from a perfect sensor, perfectly co-registered, and with 
little or no systematic errors. Likewise, the aggregation of many surface types to a coarser scale 
creates mixtures of materials whose combined spectra may be very similar and thus difficult to 
separate. We have examined these errors, which can be loosely termed “algorithm errors”, by 
using a subscene of a Landsat TM scene provided by the IPO for the Olympic peninsula of 
Washington state in the northwest Unites States (Figure 8). As can be seen in Figure 8, this scene 
is quite heterogeneous and contains 10 of the 21 IPO surface types, including several forest types 
(a mixed forest class has been added), soil types, and a good portion of urban areas. Therefore, 
we believe this scene to be a rather challenging test for any classification algorithm. 
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Figure 8.  Subscene of Land cover classification of Olympic Peninsula 
 Landsat TM test scene provided by the IPO.  

 

For each land cover type in Figure 8, we have assigned a surface reflectance for each of the 
VIIRS bands based on pure spectra provided in the NPOESS simulation toolkit. The TM pixels 
were then aggregated to a simulated mid-swath VIIRS resolution of 1200m by assuming a 
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perfect modulation transfer function (MTF). Likewise, the land cover classification was averaged 
and the class with the highest fraction within the coarser cell was retained as the dominant class 
for the VIIRS pixel. By aggregating the data we hoped to mimic the inherent natural variability 
that exists in most landscapes and by selecting the dominant type for training we further 
challenged our algorithm. Typically, training data are selected which represent land cover types 
that are over 90% pure and in our case, the dominant type could have a fraction as low as 30%. 
For our simulations we randomly selected 75%, 50%, and 25% of these data to train the decision 
tree and then tested the results of the trees on the remainder of the samples. For all simulations, 
10 different runs were performed.  

For the 75% training sample, the mean typing error for the 10 runs was 8.23% and 16.52% for 
the separate testing sample, showing that, as expected, this is a dominant source of error for this 
algorithm. For the 50% samples, the errors were 8.63% and 17.03% for the training and testing 
sample, respectively. Finally, the 25% samples produced errors of 9.38% and 18.87% for 
training and testing. Using the boosting option in C5.0, the training error were nearly removed 
for the 25% samples (0.3% error) and were only slightly reduced for the testing sample (15.0%). 
It is interesting to note that for all analyses, over 50% of the total error generated was from 

confusion between the three forest types and we could expect simpler scenes to have much 
higher typing accuracies than this one. Nonetheless, these analyses show that natural spectral 
variability within a pixel is indeed a significant error source for classifications, using over 50% 
of the allowable error in the EDR. The analyses also imply that the use of the dominant class for 
training, which simulates the use of a previous global surface type database, may introduce errors 
that would need to be reduced by further screening the training data. 

3.5.4  Misregistration of Training Data and Surface Reflectance 

We have also simulated a potential misregistration of 1, ½, and ¼ VIIRS pixels between the 
training data and the VIIRS surface reflectances, corresponding to misregistrations of 1200 m, 
600 m, and 300 m, respectively. The TOA BTs were not included in these analyses. Three shifts 
were performed on the data, first shifting the reflectances in the X direction with respect to the 
training data, then in the Y direction, and then in both the X and Y directions, which was a worse 
case scenario. Only the 25% training and testing samples were used in these analyses. The same 
data used in 3.5.3 were also used here and the aggregation error was included because the pixels 
were averaged after they were shifted. The results are summarized in Table 8. 
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Table 8. Typing errors due to misregistration of training data. Values given are the average of 
10 different runs using 25% of the data for training and a separate 25% for testing. The second 

row of values for each shift are produced when using the boosting option in C5.0 

1200 m Shift 

X Direction Y Direction X and Y Directions 

Train Test Train Test Train Test 

17.85% 39.54% 16.65% 36.67% 19.83% 44.20% 

0.5% 37.0% 0.6% 34.2% 1.5% 39.7% 

600m Shift 

13.43% 30.68% 13.10% 29.00% 15.72% 35.15% 

0.90% 28.60% 0.50% 27.60% 0.90% 32.20% 

300 m Shift 

10.49% 25.34% 10.95% 24.20% 12.25% 27.31% 

0.10% 20.50% 0.30% 21.90% 0.80% 24.00% 

 

Clearly, a registration error of 300 m or less is necessary to produce acceptable results in the 
regional product and even in this case, the typing accuracy does not provide much margin should 
other sources of error be included. While the simulations presented here do represent a fairly 
stressing case for the regional product, it may not be uncommon to find this particular 
combination of land cover types on a particular VIIRS orbit. This 300m error, however, is larger 
than what has been discussed in the past for land cover change detection (Townshend et al. 
1992) and is currently proposed for MODIS. We fully expect that the VIIRS system will be able 
to do better than a 300-m registration error for the relevant bands. 

3.5.5  Errors in Surface Reflectance 

The VIIRS Quarterly Surface Type IP relies on surface reflectances which have been corrected 
for atmospheric scattering and gaseous absorption. This process of atmospheric correction 
nonetheless introduces some systematic errors into the input data that can potentially reduce the 
correct typing probabilities. We have simulated a random error in retrieved surface reflectances 
and examined its effect on the typing accuracies of the decision tree. Two types of analyses that 
perturbed the input spectra with random noise in reflectance were performed. In one, we added 
random noise as a percentage of the input reflectance, introducing noise as 10, 25, and 50% of 
the input value. In the second, we added the error as an absolute value in reflectance, with tests 
being performed with error values of 0.01, 0.02, 0.03, 0.04, and 0.05 in reflectance being 
introduced to the NPOESS toolkit spectra. The same Landsat TM scene used in Sections 3.5.3 
and 3.5.4 was also used here. 

10-fold cross validations were performed for each random error analysis, yielding typing errors 
of 1.2, 14.1, and 30.1 % on the test data for the 10, 25, and 50% random error cases, respectively. 
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It should be noted that a 50% random error in surface reflectance introduces small relative errors 
for surface types with low surface reflectances (e.g. vegetation in the visible wavelengths) but 
very large errors for surface types with high reflectance values (e.g. vegetation in the near-
infrared, snow, sand). We found that the majority of the errors introduced in these tests were 
caused by confusions between the different forest types as well as the different soil types. 

The typing errors for the second set of analyses were 0.5, 6.2, 12.5, 19.5, and 26.1% for the 0.01, 
0.02, 0.03, 0.04, and 0.05 absolute random errors in reflectance. Here the trends observed were 
opposite to those seen in the previous analysis, with low surface reflectances being affected 
much more strongly than high. For example, a 0.05 random error in reflectance could represent a 
very small error for snow (on the order of 10%), while the same value produced a coefficient of 
variation of over 200% for the needleleaf forest class in the red portion of the spectrum. Clearly, 
analyses which consider errors in the individual bands used may be needed in the future, but 
these results show the magnitude of the errors that can be tolerated by the algorithm and these 
are shown to be quite large in many cases. We expect errors in atmospheric correction for VIIRS 
to be on the order of 0.01 to 0.02 absolute. 

As a final test, we have merged some of the smaller classes together to produce a new image 
with seven land cover classes (Table 9). Here we merged the mixed forest class with the 
deciduous forest class and all the bare classes (i.e., compact soil, beach/sand, bare rock, 
snow/ice) into one bare soil category. This new simulated classification retained the 
heterogeneity of the original scene and removed some of the smaller classes present. 10-fold 
cross-validations with the same absolute random error as before were performed. Here, the 
typing errors were 5.6% and 11.3% for 0.04 and 0.05 absolute error in reflectance, compared to 
19.5% and 26.1% for the previous analyses, showing the effect of some of the cover types 
previously included. Based on all these analyses, we find that an absolute error of 0.04 in surface 
reflectance appears to be appropriate for the baseline approach to retrieve the Quarterly Surface 
Types IP from VIIRS data. Analyses which incorporate the combined effect of the error sources 
studied, as well as other simulated scenes, may be included in future versions of this document. 

Table 9. Land cover classes included in the surface reflectance error analyses and their 
proportion within the scene. 

Class 
No. 

Surface Type % of Scene 

1) Urban 6.30 

2) Scrub 5.14 

3) Water 12.75 

4) Bare Soil 6.54 

5) Deciduous Forest 28.47 

6) Coniferous Forest 34.15 

7) Cropland 6.65 
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3.6 PRACTICAL CONSIDERATIONS 

3.6.1 Numerical Computation Considerations 

End-to-end tests on the required computer processing speed and data storage requirements will 
be performed as this algorithm matures. 

3.6.2 Programming and Procedural Considerations 

A commercially free computer code of the decision tree classifier, called OC1, has been 
identified and collected in house.  The source code was writen in C and designed to take input 
data from formated ascii data file and to output the generated decision tree into a binary file.  
Application of the generated decision tree can be implemented with the same code, but input 
image for the classification application is limited in size which is dependent on the computer 
memory and the metrics used for the classification.  This is because the code implements the 
decision tree after the whole image data are readed into memory.  A modification of the code to 
implement the decision tree line by line is carried out.  Incorparation of the modified code into 
the VIIRS Quarterly Surface Types Unit code is underway.  For the details of the algorithms and 
code of OC1, readers are directed to a paper by Murthy et al. (1994). 

3.6.3 Configuration of Retrievals 

The Quarterly Surface Types IP will be a Level 3 product on the VIIRS Earth grid at 1-km 
resolution. The Surface Type EDR will be a Level 2 product on the VIIRS swath.  Allowing for 
quality flags, the class numbers will be represented by 8-bit numbers whose value and order will 
be determined at a later date. The percentage of each cover type will be provided as a scaled 8-
bit number as will the percentage of green vegetation fraction. 

3.6.4 Quality Assessment and Diagnostics 

Several quality flags will be produced from this EDR and will be arranged according to the 
following criteria: 

• Red flags: 

− Missing/No data. 
− Ocean. 
− Clouds. 
− Inherited red flags from the upstream algorithms. 
− Solar Zenith Angle (SZA) threshold exceeds the no-report limit. 
− View Zenith Angle (VZA) threshold exceeds the no-report limit. 

• Yellow flags: 

− Pixel filled during binning process.  
− Mixed Cloud/No Cloud. 
− Cloud/Topographic Shadows. 
− Solar Zenith Angle (SZA) threshold exceeds the threshold limit. 
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− View Zenith Angle (VZA) threshold exceeds the threshold limit. 
− Inherited yellow flags from the upstream algorithms. 
− Land cover change detected. 
− Pixel flagged as changed. 
− Training pixel misclassified. 

• Green flags: 

− Training pixel (classified correctly). 

The Land Quality Flag (LQF) structure described in [V-4] is a multi-byte array that will 
incorporate quality information applicable to all VIIRS land products.  As further code 
development continues, the LQF output will be merged with the flags listed above for a final, 
operational set of quality control flags.  

3.6.5 Exception Handling 

This EDR will be produced for all land surfaces, including inland water bodies. 

3.7 ALGORITHM VALIDATION 

The validation of remotely sensed global land cover classifications presents a significant 
challenge to the land cover community. Not only are there no precedents, but there is no current 
accepted “state-of-the-art” validation technique. The validation of operational land cover 
classifications presents yet other challenges beyond those already present.  However, by the time 
the NPOESS platforms are put into operation, the experience and knowledge in validating coarse 
scale land cover products will have been significantly advanced by current and planned global 
land cover classification activities. Principal among these activities are the validation of EROS 
Data Center’s International Geosphere Biosphere Program Data and Information Systems 
(IGBP-DIS) 1 km global product, and the land cover products from MODIS. It is expected that 
the validation of the VIIRS surface type product would use data from validation sites created as a 
part of the above activities. The validation of the VIIRS surface type product is also expected to 
be performed in conjunction with the validation activities of other VIIRS products, particularly 
those of the Land IPT. This section briefly describes the objectives, methodology, and data 
requirements for the pre- and post-launch validation of the Surface Type EDR (40.6.4). It is 
expected to evolve throughout the lifetime of the project.  

3.7.1 Objectives 

The principal objectives of the validation are to verify that the global and regional land cover 
products generated from the input VIIRS data can achieve threshold requirements as specified by 
the IPO, and to provide a quantitative estimate of the recognition accuracy of the algorithm. For 
the Surface Type EDR, this implies that for either regional or global products, the dominant 
surface type identified by the algorithm must agree with the dominant land cover type at the 
surface at least 70 percent of the time. Secondary objectives are to identify both errors of 
omission and commission; to pinpoint error sources; to identify sources of confusion between 
surface types; and define avenues for algorithm improvements. 
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3.7.2 Pre-Launch Algorithm Validation 

3.7.2.1 Methods 

The Surface Type products will be validated by the following methods: 

• Comparison to AVHRR 8 km and 1 km training data from the University of Maryland. 

• Comparison to AVHRR 1 km training data produced from the IGBP-DIS global 
classification. 

• Comparison to AVHRR 8 km and 1 km classification product from the University of 
Maryland. 

• Comparison to IGBP-DIS 1 km classification product and degraded 4 km classification 
product. 

• Comparison to SeaWiFS, POLDER or MODIS global classifications if available. 

• Incorporation of high resolution TM land cover classifications. 

• Comparisons against existing high resolution land cover databases (Global Land Cover Test 
Sites, Field campaigns, regional data sets). 

• Regional verification by consultation with regional experts. 

• In situ data from USDA-Agricultural Research Service MODIS validation activities. 

• Scene simulations with all IPO scenes. 

• Comparison of FAO soil map with STATSGO soil map over North America. 

3.7.2.2 Data Needs 

• AVHRR 8 km and 1 km global NDVI, Ch. 1-2 Top-of-Atmosphere (TOA) reflectances, Ch. 
3-5 TOA brightness temperatures. 

• For global product yearly metrics for maximum, minimum, mean, and amplitude in above 
data. 

• UMD 8 km and 1 km classification. 

• UMD 8 km and 1 km training data. 

• UMD MSS scenes used for training if possible. 

• IGBP-DIS classification and 12 month of maximum NDVI composites. 

• Updated versions of all or any of the above. 

• IGBP-DIS validation results when available. 

• Thematic Mapper classifications. 

• TOA reflectances or digital number (DN) for above classifications when available. 

• Thematic Mapper data for snow/land/urban discrimination. 
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• For IPO scenes, surface reflectances and land cover type, at both full and degraded 
resolutions, realistic seasonal changes in reflectances, “natural” variability included if 
possible. 

• Realistic top of canopy spectra for different land cover types. 

3.7.2.3 Data Availability 

We have acquired most of the data products listed in 3.7.2.2, and are already using them for 
preliminary verification of the selected algorithms. We will acquire the UMD 1 km training data 
and metrics in the near future. The IPO scenes will provide a good testbed for this EDR, because 
any combination of cover types can be simulated. Many other supporting data sets have been 
identified worldwide and will be acquired according to their criticality. These include the Global 
Land Cover Test Sites Project, the North America Landscape Characterization (NALC) project, 
and the Multi-Resolution Land Characteristics (MRLC) data set, among others. Global satellite 
data from SeaWiFS, POLDER, and MODIS will add to our substantial holdings of AVHRR 
data. The purchase of additional Thematic Mapper data encompassing important IPO surface 
types may be warranted in the future. 

3.7.2.4 Data Quality 

Both the AVHRR 8 km and 1 km data contain processing artifacts and residual errors due to 
misregistration, BRDF, insufficient atmospheric correction, for example. These will affect the 
accuracy of the retrieval, but VIIRS data should improve performance. We already achieve 
threshold accuracies in all cases tested so far with AVHRR data. 

Training data will change over time, particularly due to anthropogenic activities and inter-annual 
climate variability. Therefore, training data will need to be closely scrutinized to ensure that 
erroneous data are excluded. This will be done on a regular basis by either selecting the areas 
where both the neural network and the decision tree agree for training, or by running a cross-
validation with the decision tree, using only those sites that are correctly classified in all tests. 

Neither the FAO digital soil map of the world nor the STATSGO soil map of North America 
have been validated; this could be a problem for a general accuracy assessment. But because 
both these maps have been compiled from extensive field surveys, they are expected to be fairly 
accurate. We will need quantitative estimates of the accuracy of these maps.  

Ideally, surface type information collected in situ is thought to be robust for validation of 
remotely sensed data. However, the point data need to represent the entire satellite pixel, which 
can be at the scale of one or several kilometers. The validation of a dominant surface type or the 
percentage of cover types at satellite scale, from point data collected by human analysts, is thus 
influenced by scaling issues that will need to be addressed, most likely through statistical 
analyses and/or sampling strategies. 

In most cases, land cover classifications at the scale of TM are not fully validated. In addition, 
the land cover classes used in these TM classifications are not easily translatable to those 
required by the IPO. Also, if a TM classification is 80 percent correct,  and our algorithm agrees 
with the TM data 80 percent, the total accuracy could be as low as 64 percent. Clearly, these are 
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issues that will need to be further explored. We anticipate that the IGBP-DIS and MODLAND 
activities will develop well validated products in the future. 

Although it is difficult to simulate “natural” variability in the spectral reflectances of surface 
types in the IPO scenes, these provide an excellent testbed for error budget analysis that cannot 
be duplicated from AVHRR data. We expect the principal sources of error to be principally 
related to misregistration, atmospheric correction, BRDF correction, sub-pixel clouds, and, to a 
smaller extent, sensor noise and band-to-band registration. Each of these error terms will be 
explicitly modeled using the IPO scenes and quantitative estimates provided. 

 

 

3.7.3 Post-Launch Algorithm Validation 

3.7.3.1 Methods 

The methodology used for post-launch validation of the Surface Type EDR will be essentially 
the same as that used in the pre-launch era, because we can use previously generated coarse- and 
high-resolution land cover classifications and data acquired over the MODLAND and IGBP-DIS 
validation sites. However, because of the operational nature of the VIIRS EDRs, the post-launch 
validation must also include simultaneous data acquisition from VIIRS and other satellite 
platforms, and near- or at-surface validation observations. This can be accomplished either by 
participating in multi-disciplinary field campaigns, or by organizing field campaigns just for 
VIIRS or NPOESS validation. These field campaigns would be much narrower in scope than 
field campaigns such as the First ISLSCP Field Experiment (FIFE) and BOREAS. For the 
surface type EDR, the simultaneous acquisition of VIIRS data together with satellite, airborne, 
and surface data would not be critical, because surface types rarely change much over small time 
periods. However, point data would be needed to validate high spatial resolution land cover maps 
from TM or ETM+, for example, and these in turn would be used to validate the coarse 
resolution VIIRS products. It would also be desirable to organize field campaigns where 
representative samples for the 21 IPO surface types could be found, should those not already be 
available within the MODLAND validation sites. 

3.7.3.2 Data Needs 

• Updated 1 km training data from UMD. 

• Training data from MODLAND and/or IGBP-DIS validation sites. 

• Validated global land cover classifications from MODIS. 

• Validated global land cover classifications from other sensors (AVHRR, Vegetation, 
ASTER). 

• Regional and/or local validated land cover databases. 

• Land cover change product from MODIS. 

• Validated high spatial resolution land cover classifications. 
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• In conjunction with field campaigns, high spatial resolution classifications validated from 
field observations, and acquired within two weeks of VIIRS acquisition. 

• In situ data from USDA-Agricultural Research Service MODIS validation activities. 

• Updated soil maps if available. 

3.7.3.3 Data Availability 

We do not yet know which data will be available to us for our validation exercises. Concurrent 
MODIS and ETM+ data would aid validation immensely, but those sensors may not be in 
operation in the NPOESS post-launch era. This reinforces the need for participation in and/or 
organization of field campaigns. Most of the MODLAND sites are likely to still be in operation; 
even if they are not, the appropriate data can be acquired and verified through personal contacts. 
Data from other sensors that have yet to be launched may also be available. 

3.7.3.4 Data Quality 

The issues of data quality presented in 3.7.2.4 are likely to also be applicable in the post-launch 
era of NPOESS. However, we expect our pre-launch simulation and validation activities to 
provide us the answers to many questions, particularly those related to error sources and scaling 
issues. We also expect that the data quality of the data used for post-launch validation will be 
significantly superior to current products, and that much will have been learned from the 
MODLAND validation activities. Because data sources available for validation are likely to be 
quite good yet numerous, the issue will not necessarily be one of data quality, but of data 
quantity. 
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4.0 ASSUMPTIONS AND LIMITATIONS 

4.1 ASSUMPTIONS 

• A major assumption is that the Earth’s land can be subdivided into discrete land cover 
classes or surface. 

• A principal assumption of a supervised classification is that the training data are 
representative of global or regional patterns. 

• The assumption is also made that land cover types exhibit fairly unique spectral and/or 
temporal properties and thus can be successfully separated. 

• Training data have not changed composition since they were delineated and if they have this 
change can be flagged. 

• We assume that most of the input data from other EDRs will be provided at, or better than, 
threshold accuracy. 

4.2 LIMITATIONS 

• Urban areas are difficult to classify because of their inherent variability at the global scale. 
We may be able to use city lights data from low light sensor to produce the Urban layer. 

• Wetlands will be difficult to separate because of spectral similarities to other IGBP types.  

• The direct retrieval of the soil classes specified in the SRD from VIIRS optical/thermal data 
may not be achievable considering the high degree of variability in soil reflectances, and 
other confounding factors. 

• Some Grasses and cereal/crops will be confused. 

• Some Rice paddies and wetlands will be confused. 
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5.0 EXAMPLE RESULTS 

5.1 EXAMPLE TESTING OF CLASSIFIERS 

5.1.1 Maximum Likelihood Classifier 

This approach was tested to provide a baseline for comparisons with other algorithms that are 
expected to perform significantly better (DeFries et al., 1995a; Friedl and Brodley, 1997; Weiss 
and Kulikowski, 1991). We believe that an MLC, if appropriately parameterized, can approach 
threshold accuracy but its assumption of a normal distribution is its greatest disadvantage, 
particularly at a global scale. This approach also serves to train the analyst in more advanced 
features of the ERDAS image processing software, how to produce map outputs of classified 
products with this software as well as acting as a data exploration tool. 

A first test was carried out with 24 AVHRR metrics for 1984 (i.e., minimum, maximum, mean 
and amplitude for NDVI, CH1, CH2, CH3, CH4, CH5) and the training data set from the 
University of Maryland (UMD) (DeFries et al., 1998a). The first task was to create signatures for 
each of the training sites. In this particular case, because the mean and amplitude of each metric 
is produced from the minimum and maximum values, the covariance matrices are not invertible 
and thus it is impossible to perform an MLC with these data. Several combinations of metrics 
were tested but in each case the covariance matrices for one or more cover types were not 
invertible. It was thus decided to focus on the minimum and maximum values for each of the 
metrics. 

An examination of these data revealed that the metrics for channels 3, 4, and 5 are correlated and 
may not provide much more additional information beyond that provided by one single band. In 
a second test the minimum and maximum for NDVI, CH1, CH2 and CH5 were input into an 
MLC. Table 10 shows the percent of pixels that were classified accurately when compared to the 
training data. 

Table 10. Per class accuracies for MLC using training data from DeFries et al. (1998a). 

 [Code] Surface Class (UMD) MLC Accuracy (%) 
1) EBrF Evergreen Broadleaf Forest 93.8 
2) ENeF Evergreen Needleleaf Forest 68.2 
3) DNeF Deciduous Needleleaf Forest 92.9 
4) MixF Mixed Forest 69.4 
5) Moss Mosses and Lichens 95.8 
6) Shrb Open Shrubland 88.7 
7) Bare Bare 98.3 
8) DBrF Deciduous Broadleaf Forest 77.4 
9) Crop Cropland 81.1 

10) Gras Grasslands 63.6 
11) WdGr Wooded Grasslands 90.4 
12) Wdls Woodlands 43.6 
13) Bush Closed Bushland/Shrubland 80.3 
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Overall, 7443 pixels were classified accurately out of a possible 9306 training pixels for an 
overall accuracy of 79.98 percent, which is close to our original objective accuracy. The mean 
accuracy for the 13 classes was 80.26 percent, slightly above the objective accuracy. These 
results are indeed very encouraging but they should be considered objectively. A qualitative 
comparison of the MLC output with that of DeFries et al. (1998a) shows several expected 
problems, particularly in the accurate representation of grasslands, croplands and woodlands. 
However, some cover classes such as evergreen broadleaf forests and bare surfaces appear to be 
fairly accurately represented. In the cases with low accuracies, typically the distributions of land 
cover information are multi-modal and overlap, thus making it difficult for the MLC to classify 
accurately. In these cases it may be possible to split two or more uni-modal clusters from the 
training data and then use these in an MLC. In any case, these results identify the problematic 
land cover classes on which we may need to focus more of our energies in order to increase 
classification accuracies. This test also shows that even fairly simple approaches can yield some 
promising results. 

5.1.2 Decision Tree Classifier 

The C5.0 decision tree software (Quinlan, 1993) was also tested with the 24 AVHRR metrics 
and the training data from UMD. In this program there are several options which can be used and 
which yield different levels of accuracy. Many different options were tested, but the principal 
test was carried out by using 60 percent of the training data to produce a decision tree and the 
remaining 40 percent of the data for testing results. The confusion matrices are shown in Figures 
9a and 9b for the same land cover classes listed in Table 10. 

Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

225 112 (2.0%) 161 157 (2.8%) 
 

5584 cases Training Data Classified as: 

 
Code 

1 
EBrF 

2 
EneF 

3 
DNeF 

4 
MixF 

5 
Moss 

6 
Shrb 

7 
Bare 

8 
DBrF 

9 
Crop 

10 
Gras 

11 
WdGr 

12 
Wdls 

13 
Bush 

1 EBrF 795 1      2 2     
2 ENeF 2 251  4    6 1 1 1   
3 DNeF  3 32 1          
4 MixF 2 6  385    4 2   1  
5 Moss  2   142       1  
6 Shrb      338   2 2   2 
7 Bare       726  8    1 
8 DBrF 1 1  6    384 3 1  1  
9 Crop        6 1106 9  3  

10 Gras      1 1 1 23 765 1 1  
11 WdGr         1 2 73  1 
12 Wdls 3 1      1 7 3  262  
13 Bush      3   13 1 1  168 

 

Figure 9a.  Confusion matrices for surface types listed  
in Table 10. Matrix for 60 percent training sample. 
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Decision Tree Rule Sets 

Number of Nodes Errors Number of Rules Errors 
225 380 (10.2%) 161 365 (9.8%) 

 
3722 cases Test Data Classified as: 

 
Code 

1 
EBrF 

2 
EneF 

3 
DNeF 

4 
MixF 

5 
Moss 

6 
Shrb 

7 
Bare 

8 
DBrF 

9 
Crop 

10 
Gras 

11 
WdGr 

12 
Wdls 

13 
Bush 

1 EBrF 487 11  4    7  5  6  
2 ENeF 2 141 2 14 1   8 3 1  1 1 
3 DNeF  8 21  1    3     
4 MixF 10 17  250 1   7 1 3    
5 Moss  1   92       1  
6 Shrb      231 1  2 5   3 
7 Bare      3 461  2 5    
8 DBrF 8 1  8    209 7 1  10 1 
9 Crop 4 3 1     11 695 18  2 1 

10 Gras 2 1    12 2  41 473 3 3 3 
11 WdGr      1   3 3 30  1 
12 Wdls 8 1   1   2 14 10 6 165  
13 Bush  1    6   14 6 2 3 102 

 

Figure 9b.  Confusion matrices for surface types listed  
in Table 10. Matrix for 40 percent testing sample. 

These results are again extremely encouraging in that the decision tree generated from 60 percent 
of the training data has almost 90 percent accuracy when used on the test data. One drawback 
from this approach is that there are 225 nodes for the tree (161 when using rulesets) which are 
difficult to implement on imagery in the ERDAS package. We consulted with the author of C5.0 
to ascertain how this process can best be expedited and automated. We also expect that when 
these decisions or rules are implemented on actual imagery that we will find areas with obvious 
erroneous land cover types, as was found by the UMD team. These areas will be selected for 
further testing by identifying those nodes which contribute to their mis-classification and several 
tree-pruning methods will be examined. 

A second test was performed on these same data but this time using an n-fold cross validation. In 
a cross-validation, the training data are divided into n random blocks from which decision trees 
or rulesets are produced and then successively tested on the remaining blocks of data. The results 
for a 10-fold cross validation are presented below, producing an average accuracy of 91.6 
percent and 91.9 percent for decision trees and rulesets, respectively. Again, these methods 
produce a large number of decisions and rules but our future work will emphasize their 
optimization. 
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Table 11. Results for a 10-fold cross validation using the decision tree. 

N-Fold Decision Tree Rules 

 Size Errors (%) Number Errors (%) 

0 279 8.4 199 8.3 

1 285 8.8 201 8.2 

2 294 9.7 207 9.0 

3 290 8.5 194 7.6 

4 297 7.8 204 7.6 

5 285 7.6 206 7.4 

6 279 8.2 203 7.8 

7 285 8.5 196 8.7 

8 294 9.1 185 9.5 

9 302 7.6 195 7.2 

Mean 289.0 8.4 199.0 8.1 

SE 2.4 0.2 2.1 0.2 
 
5.1.3 Neural Networks 

A back-propagation neural network (NN) was tested on the same data used for the decision tree, 
but it failed to converge after 1000 iterations. Other input data may need to be input for this NN 
to converge.  

The ARTMAP neural network was also tested by using the simulated TM scenes with 1 percent 
of noise added. To train the neural network, a number of pixels were randomly selected as the 
training data set, and a number of pixels were selected as the test data set. Two TM simulated 
scenes were used, one 256 by 256 in size, and the other 512 by 512 in size. The highest 
discrimination rate for the training data set is 79.1 percent and highest prediction rate is 79.4 
percent. This result is not very encouraging because the simulated data have very low sensor 
noise and are basically the pure class spectra. Further investigation of other neural network 
algorithms as thus deemed necessary. 

Overall, the above activities can be characterized as very successful, yielding results which 
surpass threshold and in some cases objective accuracies. It should be emphasized that these are, 
however, preliminary tests which do not contain the full complement of land cover classes 
required by the IPO.  

 

5.2 IMPLEMENTATION OF DECISION TREE RULES 

In the previous section we showed results from the C5.0 decision tree software using the 24 
metrics of DeFries et al. (1998a). That particular tree had an accuracy of 98 percent on the 
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training data and nearly 90 percent on test data but was very large (i.e., 225 nodes). A large 
decision tree is one drawback of the decision tree algorithm. It has a tendency to overfit the data 
and then it needs to be pruned back. At this time the decision tree needs to be pruned and 
implemented by hand for input into the ERDAS software so the results for large trees are 
difficult to display for quick analysis. Two methods available in C5.0 were tested. One pre-
prunes the tree according to specific parameters and the other specifies the minimum number of 
cases that can be passed down a branch. Of the several tests we performed one particular test 
with a minimum of 8 cases was found to be a good compromise between overall accuracy and 
the size of the tree. This test still had accuracies of 93.5 percent and 88.9 percent on the training 
and test data (Figures 10a and 10b), respectively, but only had 109 nodes. 

We chose this tree for input into the ERDAS package. This was done after further pruning the 
tree by consideration of majority nodes and those with large numbers of misclassified pixels. The 
resulting decisions were input into ERDAS. These results are shown in Figure 11. 

The results from this tree are quite good, agreeing very well with the 8 km classification of 
Defries et al. (1998a). However, similar problems to those encountered by those authors were 
also found on this classification. The good amount of open shrublands (yellow) present in the 
Sahara as well as the presence of deciduous needleleaf forest (cyan) in Alaska are two examples 
that, even though classification accuracies may be quite good, when rules are applied at the 
global scale some errors will still persist. This could be due to the fact that training areas are not 
sufficiently representative of the inherent natural variability or that the pruning methods are 
imperfect. Again, the refinement of our decision tree algorithm is the topic of ongoing research. 

5.3 COMPARISON OF DECISION TREE AND LVQ ON 8 KM GLOBAL AVHRR DATA 

We have performed a cross-comparison between the accuracies obtained by the decision tree and 
the Learning Vector Quantization (LVQ) Neural Network on common input data. We have 
randomly selected 10, 20, 30, 40, 50, 60, and 70 percent of the training data from DeFries et al. 
(1998a), used these to train the classifiers, and then tested the trained classifiers on the remaining 
blocks of data. The algorithm descriptions are provided in Section 3.4. Figure 12 summarizes the 
principal results from this comparison. 

As can be seen, the accuracy of the algorithms increases with the number of pixels used both for 
the training and testing data sets. The performance of the DT is slightly better than that for LVQ 
for all cases, and is within the 80 to 90 percent accuracy obtained by DeFries et al. (1998a).  All 
algorithm performance tests are well above our objective accuracy of 80 percent. It is interesting 
to note that particular land cover classes which have lower accuracies in one algorithm may have 
higher accuracies in the other. This is the case for croplands, for example, which have a higher 
accuracy in the LVQ when compared to the DT. The opposite is true for deciduous needleleaf 
forests. This indicates that a hybrid classifier as we have proposed may be appropriate because it 
will use the algorithms which are shown to perform optimally for each particular cover type. 
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Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

109 364 (6.5%) 88 374 (6.7%) 
 

5584 cases Training Data Classified as: 

Code 1 
EBrF 

2 
EneF 

3 
DNeF 

4 
MixF 

5 
Moss 

6 
Shrb 

7 
Bare 

8 
DBrF 

9 
Crop 

10 
Gras 

11 
WdGr 

12 
Wdls 

13 
Bush 

1 EBrF 779 2  1    6 1   4 1 
2 ENeF 17 232 1 12     10 1  3  
3 DNeF  1 38  1         
4 MixF 4 9 3 393    3 7    1 
5 Moss  3   134    1   1  
6 Shrb      314   2 4   7 
7 Bare      4 751   1    
8 DBrF 19 3  16    352    4  
9 Crop 3 1    4  1 1071   11 2 

10 Gras 6   1  3 15 1 61 699  8 7 
11 WdGr         2 2 56 1 5 
12 Wdls 10    8   7 9 1  234  
13 Bush      6   14   4 157 

Figure 10a.  Results for C5.0 decision tree using 24 AVHRR metrics and 13 land cover 
classes.  Matrix for 60 percent training sample. 

Decision Tree Rule Sets 
Number of Nodes Errors Number of Rules Errors 

109 414 (11.1%) 88 425 (11.4%) 
 

3722 cases Test Data Classified as: 

Code 1 
EBrF 

2 
EneF 

3 
DNeF 

4 
MixF 

5 
Moss 

6 
Shrb 

7 
Bare 

8 
DBrF 

9 
Crop 

10 
Gras 

11 
WdGr 

12 
Wdls 

13 
Bush 

1 EBrF 502 3  3    10 1 1  5 1 
2 ENeF 8 123 3 13 1   1 10  2 3  
3 DNeF  2 21 3     3     
4 MixF 5 8 1 238    6 11     
5 Moss    2 97       1  
6 Shrb      221 7  3 14   12 
7 Bare      2 446   1   1 
8 DBrF 19 4  12    193 3   7  
9 Crop 5 2  2  6  4 695 18 4 11 3 

10 Gras 6 1  2  9 11 4 42 450 1 8 2 
11 WdGr         3 2 34 1 9 
12 Wdls 7 1  1 10   5 10 7 2 172  
13 Bush      13  4 10  1 6 105 

Figure 10b.  Results for C5.0 decision tree using 24 AVHRR metrics and 13 land cover 
classes.  Matrix for 40 percent testing sample. 
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Figure 11.  Decision rules from decision tree in Figure 9 implemented onto imagery. 
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Figure 12.  Percent accuracy of Decision Tree (DT) and Learning Vector neural network 
(labeled as LVM) as a function of the percentage of pixels used in training the algorithm. 
Accuracies for both training (i.e., DT Train) and testing data sets are shown. 
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5.4 DEVELOPMENT OF NEW 8 KM TRAINING DATA 

While the training data supplied by the University of Maryland are very useful, the land cover 
classes that they represent lack some of the land cover classes specified by the IPO. We therefore 
needed to expand and supplement our training data. We chose EDC’s 1 km AVHRR 
classification (Loveland and Belward, 1997) for this. 

The first task was to re-code the EDC classes into an IPO/IGBP classification scheme, assuming 
only one bare surface class (desert). We took the most detailed of the EDC classification 
products, the Global Ecosystems Framework scheme with 99 land cover classes, and determined 
which of these classes were grouped into the EDC IGBP classification classes. By mapping the 
Mire, Bog, Fen and Marsh Wetland Global Ecosystems classes to the IPO class Marsh/Bog, and 
the Wooded Wet Swamp and Mangrove Global Ecosystems classes to the IPO class Swamp, we 
were able to split the permanent wetlands IGBP category into the appropriate IPO classes. This 
does not imply that they will be easily separable on the AVHRR data but that we do need to 
investigate their separability. This also makes the assumption, since we have no working 
definitions of the IPO land cover classes, that Marsh/Bog represents wetlands with primarily 
grass species while the Swamp category is dominated by woody species and trees. In the same 
fashion as with the wetlands classes we also used the Barren Tundra Global Ecosystem class to 
add a tundra class onto our modified IGBP scheme. Table 12 shows the correspondence between 
the IPO classification scheme, our modified IGBP classification scheme, and that used by the 
University of Maryland.  

It should be noted that sometimes two UMD and IGBP classes are mapped to one IPO class and 
in other cases, some of the classes in the UMD and IGBP schemes do not have a corresponding 
class in the IPO scheme. The new scheme, nevertheless, does offer some added flexibility, no 
matter what the classification scheme that is ultimately chosen. Also, if we consider all the soil 
classes as one, and the flooded land class as a special case, we have now covered all the principal 
IPO classes and we are in a position to provide classifications with more land cover classes. This 
also means that the land cover classification scheme to be used for MODIS can be easily 
incorporated into our algorithm. 

The next step in the process involves aggregating the 1 km classification to 8 km resolution so 
that we may be able to use it with our 24 AVHRR metrics (Table 13). For this, a program was 
used which outputs the percentage of each 1 km class within the coarser resolution pixel, as well 
as the dominant class within the 8 km pixel. It was hoped that pixels with 100 percent of the 
particular class at 8 km could then used to enlarge our existing training data set. However, the 
distribution of these pixels did not correspond very well with the percentage of each particular 
class in the 1 km data, with large classes such as Snow/Ice and Bare dominating at the expense 
of other classes. Thus, we adjusted the percentage of 8 km pixels for each class to more closely 
resemble those of the 1 km data. Table 13 shows the percentages that were used as thresholds 
and the resulting number of pixels mapped to each land cover class.  
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Table 12. Correspondence between IPO land cover classes, our modified  
IGBP system, and the University of Maryland’s scheme. 

IPO Classes Modified IGBP Classes UMD Classes 
Tropical Forest Evergreen Broadleaf Forest Evergreen Broadleaf Forest 
Coniferous Forest Evergreen Needleleaf Forest Evergreen Needleleaf Forest 
Deciduous Forest Deciduous Broadleaf Forest Deciduous Broadleaf Forest 
Savanna Savanna, Woody Savanna Woodland, Wooded/Grassland 
Cropland Cropland, Cropland/Natural  

Vegetation Mosaic 
Cropland 

Grassland Grassland Grasses 
Brush/Scrub Open Shrubland/Closed Shrubland Closed Bushland/Shrubland,  

Open Shrubland 
Tundra Tundra (Added) Mosses and Lichens 
Swamp Permanent Wetland       n/a 
Marsh/Bog Permanent Wetland       n/a 
Desert Bare/Sparse Vegetation Bare 
Rocky Fields       n/a       n/a 
Gravel       n/a       n/a 
Sandy Soil       n/a       n/a 
Loam       n/a       n/a 
Clay       n/a       n/a 
Peat       n/a       n/a 
Urban/Developed Urban/Built-up       n/a 
Flooded Land       n/a       n/a 
Snow/Ice Snow and Ice Bare 
Water Water Bodies Water 
      n/a Deciduous Needleleaf Forest Deciduous Needleleaf Forest 
      n/a Mixed Forest Mixed Forest 

 
It can be seen that most training pixels are still quite pure for most classes, with greater than 57 
out of the possible 64 1 km pixels being classified as the same class in the 8 km data. Some small 
classes such as swamp and urban/developed needed to be augmented quite a bit, but would still 
remain the dominant class at the 8 km scale. For the urban class, the EDC classification uses a 
vector overlay of the digital chart of the world and appears to provide good information in the 
United States and Europe, but does not show the large cities of China and India very well. In this 
case, purposely increasing the size of the area covered may be particularly appropriate. 
Additionally, training areas were delineated manually on the imagery to decrease the size of both 
the Snow/Ice and Bare classes. The resulting training data set now has 712,651 pixels for 
training (compared to 9,306 from UMD). It would be expected that this data set would be 
substantially noisier than the UMD data set, but it may provide a more realistic or more global 
training set. Figure 13 shows the spatial arrangement of the new training pixels on the globe. 
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Table 13. Percentages used to adjust number of training pixels for each  
land cover class in our modified IGBP/IPO scheme. 

 Class Name Percent 
Threshold 

(� %) 

Number of 
Pixels 

1 Evergreen Needleleaf Forest 96 27931 
2 Evergreen Broadleaf Forest 100 55955 
3 Deciduous Needleleaf Forest 96 11110 
4 Deciduous Broadleaf Forest  90 14047 
5 Mixed Forest 90 26574 
6 Woody Savanna 90 49716 
7 Savanna 96 51569 
8 Grassland  96 57633 
9 Closed Shrubland 90 12194 

10 Open Shrubland 100 98224 
11 Swamp 57 454 
12 Marsh/Bog 82 6446 
13 Tundra 94 13084 
14 Cropland 90 74741 
15 Cropland/Natural Vegetation Mosaic 90 44667 
16 Urban/Developed 50 1276 
17 Bare/Sparsely Vegetated  83278 
18 Permanent Snow and Ice  83722 
19 Water UMD Water 

Mask Used 
 

 Total (water not included)  712651 
 
 

For testing purposes, we included all of our new training pixels into a decision tree using the 24 
AVHRR metrics from UMD. The software ran on 712,651 samples and contained 42,120 nodes 
but still had an overall accuracy of 95.9 percent. As expected, classes such as Swamp, 
Marsh/Bog, Urban/Developed and Cropland/Natural Vegetation Mosaic had poorer accuracies 
than the others, and in particular, the Urban class had an accuracy below 50 percent. Because 
urban areas are composed of so many different components that can vary depending on 
geographical location, it may be extremely difficult to accurately classify this land cover type at 
the global scale. The MODIS ATBD does not give any clues as to how this cover type is 
separated in their algorithm. We may need to use a static database for this cover type as well. 
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Figure 13.  New 8 km training areas for IPO/IGBP land cover  
classes derived from EDC 1 km global classification. 

Figure 14 shows results produced using these new training data over North America. To produce 
these results, several tests with different decision tree options were run and it was found that the 
boosting option in C5.0 provided the best results for this data set that used the 24 UMD metrics 
for 1984 coupled to the degraded EDC classification for 1992. With the boosting option, a series 
of 10 decision trees are built and each successive tree pays particular attention to any erroneous 
results from previously generated trees. Typically the boosted tree provides recognition 
accuracies which are 10 percent or greater than those from a normal tree but the process is, 
however, more computer intensive.  

The Flooded land class is not considered here in Figure 14. Loam, Sandy Loam, Clay, Peat, 
Gravel, and Rocky Fields cover types are included in the Desert cover type. The training data 
were generated from relatively pure (greater than 90 percent for most classes) 8 km pixels. Using 
the boosting option, the recognition accuracy is over 99 percent for 70 percent randomly selected 
pixels in a) and 88.2 percent for the remaining 30 percent in Figure 14a. We have also produced 
a Dominant Class image (not shown) from the percentages of each cover type within the 
degraded 8 km pixels. For the entire North American continent, the overall recognition accuracy 
(i.e., against training, testing, and unseen cases) is approximately 74 percent. These results are 
extremely encouraging, considering that the EDC data are for 1992 and the AVHRR metrics are 
for 1984. 
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Figure 14.  a) 8 km training data produced from degraded 1 km AVHRR global land cover 
classification from EROS Data Center (EDC) (Available from http://edcwww.cr.usgs.gov/ 
landaac/glcc/globe_int.html). b) Output from C5.0 decision tree with boosting option 
(Quinlan 1993) using 24 AVHRR metrics for 14 of the 21 IPO cover types, plus a Mixed 
Forest type. 

This is our first attempt at using an IPO classification scheme at the continental scale, albeit with 
only one bare soil class (Desert). In general, results are very encouraging but low individual class 
accuracies for land cover classes such as Urban/developed and Desert, for example, point to the 
need for either reducing the number of training samples or somehow cleaning up those that are 
included. Closer examination of the results and training data also revealed what may be errors in 
the EDC classification, such as wooded grasslands (mapped as Savannas in Figure 14) in 
Northern Alaska and the presence of shrublands on the Western portion of Baffin Island and on 
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Queen Elizabeth Island. Consultation of other Alaska vegetation maps show the same areas 
classified as principally tundra with shrubs. We will contact the EDC with these findings. 
Finally, this particular data set and subsequent results are quite unique to our knowledge and 
present several research problems that will also be addressed in the future. 

5.5 DEVELOPMENT OF PROTOTYPE VIIRS 1 KM CLASSIFICATION 

The only currently available data set for 1-km testing on a global scale is based on AVHRR, and 
it is difficult to either simulate or break down the related errors into individual sources, as 
previously discussed in section 3.0. However, because the input data are global, monthly 
composited AVHRR data, all of the AVHRR error sources are imbedded within the data sets and 
as such provide a much more stringent and realistic test of the algorithm performance as would 
be provided by simulated data. 
The final step in the algorithm development for this EDR involved the testing of the decision tree 
software on the full resolution 1 km global AVHRR product from EDC. Because of 
computational limitations (a full version of the data set requires in excess of 60 GB of storage 
space), we were only able to test a sub-sample of the global data set by extracting every 5th pixel 
from the full resolution 1 km AVHRR data. The input metrics and training data used are 
described in detail in Hansen et al. (2000). We have extended this global training data set to the 
full IGBP classes. Specifically, we have re-labeled some of the training data from Hansen et al. 
(2000) into the IGBP wetlands class (e.g. Everglades, Louisiana Swamps). We have also 
delineated other wetlands training data on the AVHRR data directly in regions with known large 
wetlands areas (e.g. Pantanal in Brazil, Okavango Delta in Africa, Russian wetlands east of the 
Urals). Urban areas were also delineated in this fashion for large urban complexes all over the 
world. Snow and Ice training data were selected from large ice caps or glaciers in Greenland, 
Alaska, and Iceland. Finally, the IGBP Croplands/Natural Vegetation Mosaics class was 
modeled by randomly mixing from 10 to 60% of the croplands metrics with either forests, 
shrublands, and grasslands metrics, as specified by the IGBP definition for this class (see Table 
3). A global training data set of 43340 pixels was thus created for testing the algorithm. Table 14 
shows the number of training samples used for each surface type. The Water Bodies could not be 
tested because the AVHRR data contain a land/water mask. 
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Table 14. Number of training pixels used in development and testing of the VIIRS prototype 1 
km product. 

IGBP Class Name Number of Training Samples 
1) Evergreen Needleleaf Forests 1806 

2) Evergreen Broadleaf Forests 4658 

3) Deciduous Needleleaf Forests 504 

4) Deciduous Broadleaf Forest 2091 

5) Mixed Forests 1855 

6) Closed Shrbulands 1412 

7) Open Shrublands 3246 

8) Woody Savannas 4247 

9) Savannas 1907 

10) Grasslands 4211 

11) Permanent Wetlands 630 

12) Croplands 6907 

13) Urban/Built-Up 252 

14) Croplands/Natural Vegetation 
Mosaics 

4000 

15) Snow and Ice 1705 

16) Barren 3909 

17) Water Bodies Land/Water Mask 
 
The training data listed above are generally evenly distributed over the surface of the Earth and 
are available for every continent except Antarctica. Because no a priori reliable estimates of the 
actual distribution of IGBP cover types on the Earth is available, the numbers in Table 14 may 
not exactly reflect this actual distribution. 
To generate the algorithm error specification, the typing accuracy for the VIIRS Quarterly 
Surface Types IP was tested on this global sample of 43,340 training points known a priori to 
represent 16 of the 17 IGBP surface types. The full 43,340 global training samples were 
randomly split into an 80% training sample which was used to develop a boosted decision tree 
which was then applied to the remaining 20% (8639 samples) of the samples for testing, 
following Strahler et al. (1999). The overall mean typing accuracies, and their standard 
deviations, obtained when applying the boosted decision trees to the testing samples for 50 such 
random training/testing replications were retained and represent a robust approximation of the 
true accuracy, and its potential true variability. An overall mean typing accuracy of 88% 
(±0.25% standard deviation) was obtained from the 50 replicated sets. The summary 
stratification of the mean correct typing probability for these same tests over the 16 classes 
considered is as follows: 

• Evergreen Needleleaf Forests: 76.04% (±2%) 

• Evergreen Broadleaf Forests: 95.21% (±0.5%) 
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• Deciduous Needleleaf Forests: 85.15% (±3.6%) 

• Deciduous Broadleaf Forests: 79.94% (±1.7%) 

• Mixed Forests: 76.62% (±1.9%) 

• Closed Shrublands: 81.63% (±2.2%) 

• Open Shrublands: 92.46% (±1%) 

• Woody Savannas: 79.69% (±1.1%) 

• Savannas: 59.63% (±2.6%) 

• Grasslands: 88% (±0.9%) 

• Permanent Wetlands: 74.19% (±3.7%) 

• Cropland: 93.58% (±0.5%) 

• Urban/Built-up: 43.76% (±6.7%) 

• Cropland/Natural Vegetation Mosaics: 94.42% (±0.8%) 

• Snow/Ice: 99.64% (±0.4%) 

• Barren: 98.96% (±0.4%) 

• Water Bodies: Mask used 
 

The overall typing accuracy of 88% is well above the threshold requirement of 70%. In addition, 
a standard deviation of a quarter of a percent implies that these accuracies are very robust and 
stable. Threshold performances are achieved in 14 of the 16 classes considered, with only the 
Urban class, as expected, and the Savannas class having accuracies lower than 70%. Further 
examination and refinement of the Savannas class will be performed in order to determine the 
reasons for this lower accuracy. The VIIRS low light level sensor may be required to produce a 
city lights product that can be used to better determine Urban areas of the Earth. In general, the 
results obtained for all of the other cover types indicate that the boosted decision tree is reliable, 
stable, and accurate. 

Figure 15 shows the prototype VIIRS Surface Type global product that is produced when the 
boosted decision tree is applied to the remaining AVHRR data. This is the first such product to 
be produced in an entirely automated fashion worldwide. The accuracies listed above are also the 
best that have been retrieved to date on similar global products. These advances made on 
AVHRR products could only been achieved by the use of the global training data set published 
by the University of Maryland and the judicious development of temporal metrics which amplify 
the separation of coarse scale cover types. The C5.0 decision tree algorithm is the tool that 
allows us to make this a flexible, robust, accurate, and automated algorithm that is tailored for 
operational use. 
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Figure 15. Prototype VIIRS Surface Type Global product. 
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APPENDIX A ANALYSIS OF THE DIRECT RETRIEVAL OF SOIL CLASSES FROM VIIRS 
OPTICAL/THERMAL DATA 

A.1 Soil Class Retrieval - Introduction 

As described in the old version of the SRD (p. 40), the “Surface Type is defined as the 
predominant vegetation and/or soil type in a given area”. One of the issues regarding the IPO 
classification scheme is that six out of the 21 surface types appear to be some combination of soil 
texture types or at least a gradation of particle sizes. The soil types in question are: Rocky Fields, 
Gravel, Sandy Soils, Loam, Clay, and Peat. The purpose of having these soil classes as surface 
types is presumably to serve as inputs to Land Surface Parameterization schemes for climate 
modeling because of their effect on sensible heat fluxes, runoff, and soil water storage, but they 
could also serve some military tactical purpose. 

At this time, the direct retrieval of soil type and/or texture from visible/infrared and thermal 
remotely sensed data has not been demonstrated at the regional and global scales, and much less 
in an operational scenario. Additionally, no current or planned land cover classification product 
includes soil types as land cover classes. After discussions with our science team, we had serious 
concerns that these soil surface types could not be retrieved even at the threshold level and as 
such we had proposed the usage of a static digital soil database available from the Food and 
Agriculture Organization (FAO) in Rome (FAO, 1995). 

In this section we document a series of analyses performed to assess the feasibility of extracting 
soil type information directly from optical/thermal data acquired by VIIRS. Results using 
laboratory acquired soil spectra show that soil types and general groupings can have a rather 
large natural variability in reflectances at many wavelengths in the spectrum which does not 
appear strongly correlated to soil texture components. In addition, no reliable trends were found 
to support the accurate separation of even fairly broad soil categories. However, analyses using a 
decision tree algorithm did show some moderate success in separating sandy, loamy, and clayey 
soils. This type of analysis may warrant further exploration in the future with expanded soil types 
and/or simulated satellite data. 

A.2 Soil Class Retrieval - Background 

One interpretation of the “and/or” in the SRD sentence above is that the IPO want the vegetation 
AND associated soil types within a pixel or cell. This could mean that a Tropical Forest could be 
on clayey soils or a Desert on sandy soils, for example. Another interpretation is that only areas 
that are bare at any time of the year should be classified as the appropriate soil type. This would 
mean that annual crops grown on sandy soils could be classified as Croplands in the global 
product and as Sandy Soil in the regional product in winter. 

Under densely or even sparsely vegetated conditions, the direct retrieval of background or soil 
information from the remotely-sensed data would be possibly achievable only through the use of 
an un-mixing algorithm, which is an objective at this time. Alternatively, if the soil information 
is to be provided through the usage of a static soil database, then data acquired by VIIRS will not 
be needed. Thus, there would appear to be some contradictions between the need for soil classes 
and the threshold and objective requirements.  
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In the case of bare soil surfaces, however, the combined optical/thermal properties of the soils 
may allow the direct separation of several broad soil types without having to depend on the soils 
database. 

One of the issues regarding the IPO soil types is that six out of the 21 surface types appear to be 
some combination of soil texture types, or at least a gradation of particle sizes, which makes their 
classification even more difficult. The soil types in question are: Rocky Fields, Gravel, Sandy 
Soils, Loam, Clay, and Peat. As shown in Table A.1, the U.S. Department of Agriculture 
(USDA) defines several classes of soil separates based on their particle size fractions. As we 
understand the IPO soil types, the Rocky Fields surface type would be composed of the coarsest 
materials, followed by Gravel, Sandy Soils, and so forth.  

The USDA also uses a texture triangle to define soil textural classes based on the proportions of 
sand, silt, and clay present in the soil (Figure A.1). As can be seen, loams are typically made up 
of approximately equal amounts of sand, silt, and/or clay, and the corners of the triangle 
represent more or less pure sand, silt, or clay. Peat, although not a soil texture class per se, is 
typically characterized by very dark soils with a very high organic matter and water contents, and 
much smaller amounts of the other three materials.  

Some key points can be made from Table A.1 and Figure A.1 regarding the IPO soil classes. If 
the classification is made according to the dominant material criteria, then many clayey soils will 
be classified as sandy. Likewise, a loamy soil will almost never be the dominant type because it 
is made up of the other three materials. Therefore, a percentage of either sand, silt, or clay will be 
greater than the other and, according to the IPO definitions, should be classified as such. Also, if 
the soil type definitions are based on soil texture then the silt category should be included instead 
of the Loam class. These issues may arise from the lack of definitions that we have been 
provided and we anticipate that with responses to our ICSRs they should be better resolved. 

Intuitively, it would seem that sandy soils could be expected to be brighter in the visible/infrared 
portions of the spectrum than clayey soils, and in many cases this is indeed the case 
(Jacquemoud et al., 1992). However, soil reflectances result from a complex interplay between 
the reflective properties of constituents of the parent material, particle coatings, weathering 
processes, structure, texture, and moisture and organic matter contents (Irons et al., 1989). It is 
thus very difficult to verify a linkage between specific soil characteristics and the soil 
reflectance. 

Table A.1. Soil particle fractions as defined by the U.S. Department  
of Agriculture (USDA) (Adapted from Irons et al. 1989). 

Soil Separate Particle Size Range (mm) 

Gravel > 200 
Sand 0.05 - 1.00 
Silt 0.002 - 0.05 
Clay < 0.002 
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Figure A.1.  USDA soil textural triangle. The percentage of sand, silt, and clay present in 
each soil textural class is obtained by reading the numbers parallel to each base of the 
triangle (i.e., percentages of clay are on lines parallel to the sand base). 

Several attempts at providing general classifications based on soil spectral measurements have 
been made. Condit (1970) measured the spectra of 285 soils from the U.S. in the 320 to 1000 nm 
region and found that three general spectral curve shapes described the spectral curves from his 
database fairly accurately. Stoner and Baumgardner (1981) acquired spectral data from 485 soil 
samples from the U.S. and Brazil and recognized five basic soil reflectance curve shapes from 
0.3 to 3.0 microns. The shapes were principally modified by the amount of organic matter and 
iron oxide present in the soils. 

More typically, studies have noted weak or very weak relationships between soil properties such 
as sand or organic matter contents and reflectances in selected wavelength regions (Gumuzzio et 
al., 1997). Recently, the thermal properties of minerals, particularly quartz, and soils have been 
explored for the purpose of soil type discrimination (Salisbury and D’Aria, 1992a, 1992b). In the 
context of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
mission, Salisbury and D’Aria (1992b) showed that a ratio of ASTER bands 10 (8.125-8.475 
µm) to 14 (10.95-11.65 µm) had a good, albeit non-linear, relationship to the combined amount 
of silt and clay present in the soil. However, soils with high organic matter or iron oxide contents 
were filtered through the use of another thermal band ratio between ASTER bands 10 and 12 
(8.925-9.275 µm), and the authors expressed some concerns about the additional effects of soil 
moisture on these ratios. The general idea behind these studies is that the strong response of 
quartz, and by extension sand, in the 8 to 10 micron region could provide a basis for the 
discrimination of sandy from non-sandy soils. Because the design for VIIRS contains a spectral 
band centered at about 8.55 µm, we felt that this type of approach could possibly be used to 
retrieve at least some soil information directly from the VIIRS data.  
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It cannot be stressed enough that the above studies were largely performed in the laboratory and 
under controlled conditions. Field and/or satellite remote sensing studies of soils will in all 
likelihood be affected by atmospheric, surface temperature, and bidirectional effects, among 
others, and most importantly, the natural variability of soil properties within the field of view of 
the sensor (Irons et al., 1989; Kealy and Hook, 1993). In fact, the retrieval of soil type and/or 
texture from visible/infrared and thermal remotely-sensed data has not been demonstrated at the 
regional and global scales, and much less in an operational scenario. We have very serious 
concerns that soil texture or soil classes cannot be retrieved at the threshold level and this is why 
we have proposed the usage of the FAO Digital Soil Map of the World (FAO 1995). 

Nevertheless, we have taken an objective point of view on this issue and explored the 
information content of soil reflectances in an attempt to identify spectral regions whose 
combined information could yield a potential soil type retrieval algorithm. For this task, we 
acquired the spectra of 43 soil types from the United States and the Middle East directly from the 
ASTER spectral library. These spectra were measured by scientists at Johns Hopkins University 
(JHU), span the spectral range from 0.4 to 14 microns, and are representative of broad soil 
categories. The instrumentation and measurement techniques used to acquire the spectra in the 
laboratory are described in Salisbury and D’Aria (1992b) but can also be found at 
http://asterweb.jpl.nasa.gov/speclib/jhu_description.html. Table A.2 lists the principal attributes 
of the 43 soil types from the ASTER spectral library. 

http://asterweb.jpl.nasa.gov/speclib/jhu_description.html
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Table A.2 Description of soils from the Johns Hopkins University Spectral Library.The soil 
spectra are available through the ASTER internet site (http://asterweb.jpl.nasa.gov/speclib/). 

NO. NAME CLASS SUBCLASS %Sand %Silt %Clay %Organic 

1 Reddish brown fine sandy loam Alfisol Paleustalf 85.5 7.7 7.3 0.16 
2 Brown loamy fine sand Alfisol Haplustalf 85.2 8.5 6.3 0.86 
3 Dark reddish brown fine sandy loam Alfisol Paleustalf 73.3 17.9 8.8 1.44 
4 Brown sandy loam Alfisol Paleustalf 62.4 25.4 12.2 0.71 
5 Brown to dark brown gravelly loam Alfisol Haploxeralf 60.2 36.5 4.2 8.54 
6 Reddish brown fine sandy loam Alfisol Paleustalf 53.8 26.1 20.1 1.3 
7 Brown fine sandy loam Alfisol Haplustalf 49.8 43.2 7 0.76 
8 Brown fine sandy loam Alfisol Haplustalf 48.6 45 6.4 1.15 
9 Pale brown silty loam Alfisol Fragiboralf 17.4 74.7 7.9 0 

10 Very dark grayish brown loamy sand Aridisol Torripsamment 88.5 6.9 4.6 0.51 
11 Light yellowish brown loamy sand Aridisol Camborthid 87.7 8.3 4 0.13 
12 Brown gravelly sandy loam Aridisol Haplargid 81.3 15.5 3.2 0.1 
13 Dark brown sandy loam Aridisol Calciorthid 79.8 15.5 4.7 0.48 
14 Light yellowish brown interior dry gravelly loam Aridisol Calciorthid 48.9 40.4 10.7 0.5 
15 Very pale brown to brownish yellow interior dry 

gravelly silt loam 
Aridisol Gypsiorthid 41.9 41.7 16.4 0.47 

16 Dark brown interior moist clay loam Aridisol Salorthid 38.4 50.5 11.1 1.03 
17 Light yellowish brown clay Aridisol Salorthid 29.7 18.8 51.5 0.68 
18 Brown silty loam Aridisol Camborthid 28.5 64.3 7.2 0.89 
19 Dark yellowish brown silty clay Aridisol Salorthid 26.6 15.3 58.1 0.4 
20 Light yellowish brown loam Aridisol Calciorthid 11.2 70.7 18.1 1.02 
21 White gypsum dune sand Entisol Torripsamment 100 0 0 0 
22 Brown to dark brown sand Entisol Quartzipsamment 94 3.8 2.2 0.52 
23 Brown to dark brown silt loam Entisol Ustifluvent 21.5 46.3 32.2 0.43 
24 Brown sandy loam Inceptisol Haplumbrept 75.9 14.2 9.9 4.85 
25 Dark brown fine sandy loam Inceptisol Haplumbrept 75.3 18.8 5.9 3.41 
26 Gray/dark brown extremely stoney coarse sandy loam Inceptisol Cryumbrept 71.8 21.1 7.1 6.18 
27 Brown to dark brown gravelly fine sandy loam Inceptisol Xerumbrept 68.3 29 2.7 5.43 
28 Dark yellowish brown micaceous loam Inceptisol Dystrochrept 43.6 30.7 25.7 0.96 
29 Pale brown dry silty clay loam Inceptisol Ustocrept 16.1 47.4 36.5 0.95 
30 Very dark grayish brown silty loam Inceptisol Plaggept 6.1 84.1 12.9 3.8 
31 Brown to dark brown sandy loam Mollisol Hapludoll 73.2 18.7 8.1 0.61 
32 Grayish brown loam Mollisol Haplustall 61.3 26.7 12 2.49 
33 Very dark grayish brown loam Mollisol Agriudoll 53.7 32.4 13.9 1.06 
34 Very dark grayish brown loam Mollisol Cryoboroll 50.6 31.9 17.5 2.87 
35 Very dark grayish brown loam Mollisol Paleustoll 44.5 41 14.5 1.11 
36 Black loam Mollisol Cryoboroll 36.6 45.9 17.5 6.64 
37 Very dark grayish brown silty loam Mollisol Argiustoll 26.9 50 23.1 1.57 
38 Very dark grayish brown silty loam Mollisol Argiustoll 22.6 54.6 22.8 2.22 
39 Gray silty clay Mollisol Haplaquoll 11.3 63.1 25.6 1.88 
40 Dark grayish brown silty loam Mollisol Agialboll 6.3 63.4 30.3 2.29 
41 Dark reddish brown, organic-rich, silty loam Spodosol Cryohumod 0 99.96 0.04 28.5 
42 Brown to dark brown loamy sand Ultisol Hapludult 90.2 7.4 2.4 0.37 
43 Brown to dark brown clay Vertisol Chromoxerert 34.4 27.4 38.2 1.4 

 

http://asterweb.jpl.nasa.gov/speclib/)
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A.3 Soil Class Retrieval - Results 

A.3.1 General Soil Reflectance Features 

Figures A.2 and A.3 show the full spectra of five “brown to dark brown” colored soils from the 
ASTER spectral library. These soils represent four soil classes and have varied quartz and sand 
contents (see Table A.2). Most of these soils have a fairly low organic matter content except for 
the gravelly loam soil which has an organic matter content of 8.54 percent. In the 0.4 to 3.0 
micron spectral range (Figure A.2), there is a fairly large variation in soil brightnesses at almost 
all wavelengths, with a near-equal separation of the soil reflectances, apparently unrelated to 
sand content. The clay soil has similar reflectances to the sand in the 1.0 to 2.5 micron range 
while the sandy loam is much brighter than the sand for the entire visible/infrared range. Also, 
the soil with the highest organic matter content (gravelly loam) does not have a lower reflectance 
than the silt loam, as could be expected. The shape of this curve between 0.4 and 1.5 microns is, 
however, less concave than the shapes for the other soils, and is qualitatively similar to those 
organic-dominated soils described by Stoner and Baumgardner (1981). 

From 3.0 to 14.0 microns, several prominent spectral regions of variability are evident (Figure 
A.3), such as those between 3.0 and 6.0 microns, and 8.0 and 10.0 microns, the latter being 
associated with the quartz restsrahlen bands (Salisbury and D’Aria, 1992a, 1992b). Additionally, 
a smaller region of interest is found between 12.5 and 13.5 microns and again is related to the 
amount of quartz present in the soil. The variability in reflectances found between 3.0 to 6.0 
microns does not appear to follow any trends with sand content, with the silty loam, sandy loam, 
and clay all having greater reflectances than the sand. In the 8.0 to 10.0 micron region, 
decreasing reflectances with decreasing sand contents are apparent for four of the soils except the 
clay. In addition, the spectra for the gravelly loam and silt loam show the effects of organic 
matter and iron oxide on the two quartz restsrahlen peaks. According to Salisbury and D’Aria 
(1992b), organic matter tends to subdue the quartz peaks while iron oxide may distort the far 
peak as seen for the silt loam spectrum. This forms the basis for an ASTER band 10/12 ratio to 
separate those soils. 

A.3.2 Soil Reflectance Variability in Nominal VIIRS Spectral Bands 

We have also examined the variability or information content of the reflectances throughout the 
spectrum. For this task, we have averaged the hyperspectral ASTER reflectances to 
approximately conform to the nominal spectral bands of VIIRS as well as several of the ASTER 
or MODIS thermal bands, providing a nearly continuous spectral coverage of the soil 
reflectances. Table A.3 shows the bandwidths selected for this analysis. We have also stratified 
the ASTER soils into Sandy, Loamy, and Clayey soil categories according to the general 
groupings of soil textural classes given by the USDA (Soil Survey Staff, 1975): 

• Sandy soils:  Sands, Loamy Sands. 

• Loamy Soils:  Sandy Loam, Loam, Silt Loam, Silt, Clay Loam, Sandy Clay Loam, Silty Clay 
Loam. 

• Clayey Soils:  Sandy Clay, Silty Clay, Clay. 
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Figure A.2.  Selected spectra from 0.4 to 3.0 �m for five brown to dark brown colored soils. 
Numbers in parentheses represent sample numbers given in Table A.2. 
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Figure A.3.Same spectra as Figure A.2 but covering the spectral range from 3.0 to 14.0 �m. 
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The USDA also provides quantitative definitions for each of the above soil types according to 
the percent sand, silt, and/or clay content of any soil. We have taken the soil types given in the 
ASTER library and grouped them into the three general groupings. From this grouping, 6 of the 
soils are classified as Sandy, 33 as Loamy, and the remaining 4 as Clayey. Unfortunately, the 
sample numbers are not equal, with the Loamy soils being quite dominant. 

Figure A.4 shows the means and standard deviations for all soils, as well as the three general 
groupings described above. For this analysis the spectrum for the gypsum sand was omitted 
because it was an obvious outlier at practically all wavelengths. Unexpectedly, the means for the 
clayey soils are higher in the visible region than those for the sandy soils but this could be 
attributable to the small number of clay soil samples. Other studies have found that clayey soils 
tend to be generally darker in this wavelength region (Jacquemoud et al., 1992).  

The variability between the mean reflectances for the different soil types appears to be similar 
for most of the visible and middle infrared regions and is relatively small, with 5-10 percent 
reflectance differences throughout the range. The standard deviations for the groupings are in 
most cases larger than these mean differences, although the standard deviations for the clayey 
soils are substantially higher when compared to the other soils, particularly the sandy soils. As 
seen for the individual spectra, there are also regions of reflectance variability at around 3.75 
µm, and again from 8 to 10 microns. The decreasing trend of reflectances at 3.75 µm with 
decreasing sand content may hold some additional information to that provided by the 8-10 µm 
region. Between 8 to 10 microns the effect of the quartz restsrahlen bands is apparent for the 
sandy soils, and not prominent for the clayey soils, indicating that a thermal band ratio approach, 
as suggested by Salisbury and D’Aria (1992b), appears warranted in this case, and would help to 
separate these soil types. 

Figure A.5 shows the coefficients of variation (CV), or the standard deviation normalized by the 
sample mean, for the same data as seen in Figure A.4. This was done to minimize the apparent 
dependence of the standard deviations on the sample reflectances. Again, these plots are 
suggestive of a fairly large information content, or at least a large reflectance variability, in 
several spectral regions, particularly in the visible and thermal. In the visible wavelengths, CVs 
are typically quite large, meaning that the deviations are equal to at least half of the sample 
means. This apparent natural variability also highlights the difficulties in ascribing a change in 
reflectance to any particular causative factor. For example, the variability in reflectances for the 
clay soils, as shown by the CV, is larger than the variability shown for all soils together. This is 
in part due to the small number of samples but yet it is much smaller for the Sandy Soils. The 
four clay soils all have fairly similar sand, silt, clay, and organic matter contents yet their 
reflectances in the visible can deviate by 15 to 30 percent (Figure A.6). 
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Table A.3. Bandwidths for spectral bands selected for the analysis. Some bands approximately 
correspond to the VIIRS nominal bands, others to ASTER and MODIS. 

 
Band Designation Band 

No. 
Bandwidth 

(�m) 
Approx. Band 
Center (�m) VIIRS MODIS ASTER 

1 0.402-0.422 0.412 VIIRS 1 MODIS 8  
2 0.433-0.453 0.443 VIIRS 2 MODIS 9  
3 0.453-0.480 0.466  MODIS 3  
4 0.480-0.500 0.490 VIIRS 3 MODIS 10  
5 0.500-0.545 0.523  MODIS 11  
6 0.545-0.565 0.555 VIIRS 4 MODIS 4  
7 0.565-0.620 0.593    
8 0.620-0.670 0.645 VIIRS 5 MODIS 1  
9 0.670-0.841 0.742    

10 0.841-0.876 0.860 VIIRS 6 MODIS 2  
11 0.876-0.931 0.904  MODIS 17  
12 0.915-0.965 0.940  MODIS 19  
13 0.965-1.230 1.098    
14 1.230-1.250 1.244  MODIS 5  
15 1.250-1.360 1.308    
16 1.360-1.390 1.376 VIIRS 7 MODIS 26  
16 1.390-1.628 1.376    
17 1.628-1.652 1.510 VIIRS 8 MODIS 6  
18 1.652-2.105 1.640    
19 2.105-2.155 2.130 VIRS 9 MODIS 7  
20 2.155-3.660 2.778    
21 3.660-3.840 3.749 VIIRS 10 MODIS 20  
22 3.840-3.929 3.885    
23 3.929-3.989 3.961  MODIS 21-22  
24 3.989-4.500 4.237    
25 4.500-5.000 4.743    
26 5.000-5.500 5.268    
27 5.500-6.000 5.769    
28 6.000-6.535 6.257    
29 6.535-6.895 6.713  MODIS 27  
30 6.895-7.500 7.195    
31 7.500-8.125 7.806    
32 8.125-8.475 8.296   ASTER10 
33 8.400-8.700 8.549  MODIS 29  
34 8.700-8.925 8.817    
35 8.925-9.275 9.072   ASTER12 
36 9.275-10.250 9.717    
37 10.250-10.750 10.496 VIIRS 11  ASTER13 
38 10.780-11.280 11.032 VIIRS 11 MODIS 31 ASTER14 
39 11.280-11.770 11.535    
40 11.770-12.270 12.030 VIIRS 12 MODIS 32  
41 12.270-13.185 12.727    
42 13.185-13.485 13.345    
43 13.485-13.785 13.661    
44 13.785-14.000 13.889    
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Figure A.4.  Means (MN) and standard deviations (STDEV) in reflectances for bands in 
Table A.3 for all soils and for three general soil groupings. The x-axis values have been 
compressed for clarity and only represent the approximate positions of band centers. 
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Figure A.5.  Coefficients of Variation for same data presented in Figure A.4. 
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Figure A.6.  Mean reflectances for the four clayey soils. Numbers in  
legend correspond to sample numbers in Table A.2. 

For all soils, CV values greater than 50 percent are also found at 7.2 µm and throughout the 
thermal regions, further highlighting the potential soil information in this spectral region. For the 
sandy soils, less variation is seen in the 8-10 micron range, presumably because of the high sand 
content for all these soils, while the loamy soils show larger variability in this region because 
they encompass a greater variety of soil types. Again, large CV values are found in the thermal 
wavelengths for the clayey soils. It should be noted that similar observations were made when 
the soils were stratified by soil class (i.e., Alfisol, Aridisol, Inceptisol, Mollisol), although in this 
case the Inceptisols had CVs greater than 100 percent at almost all wavelengths. These 
observations suggest that in many cases the within group variations may be greater than the 
variation between groups and raise some important concerns about the potential retrieval of soil 
information from remotely-sensed data. However, if general relationships can be developed that 
explain a large amount of the variations, and if it can be determined what the variability is related 
to, a potential may still exist to separate these broad soil categories. 

A.3.3 Linear Regression Analysis 

We have explored the relationships between the spectral reflectances at all bands to the different 
soil components (i.e., sand, silt, clay, and organic matter contents) in order to develop potential 
metrics for soil type separation. The general idea was that if some general thresholds could be 
found, they could be used to discriminate between the three broad soil types. 

Extremely weak or no linear relationships were found between sand, silt, and clay contents and 
reflectances at all bands in Table A.3. Some moderate correlation (r2>0.3), however, was found 
between sand and silt contents at several bands between 4.75 and 6.0 microns. This is 
unfortunately an area of very strong atmospheric gaseous absorption due to CO2. For the bands 
between 8 and 10 microns, r2 values were between 0.2 and 0.3 with maximum values at 8.55 and 
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8.8 µm (r2=0.29 and 0.3, respectively), and polynomial and exponential fits performed only 
marginally better than linear regressions (Figure A.7). This implies that although quartz content 
is important because of its effect on the restsrahlen bands, the relationships between sand content 
and reflectance still contains a large amount of scatter and thus uncertainty. Coefficients of 
determination for relationships between clay content and reflectances were less than 0.2 for all 
spectral bands examined, and typically much less. 
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Figure A.7.  Scatterplot between reflectance and the sand content of 43 soils in the ASTER 
spectral library for three selected spectral bands. 

Moderate negative linear relationships were found between organic matter content and the 
reflectances at most bands in the visible/infrared and shortwave thermal infrared, with maximum 
values at 2.13 µm (r2=0.4) and 3.75 µm (r2=0.42). For these equations samples 1 and 41 were not 
considered. These results hint that these bands could be used to discriminate organic rich from 
non-organic rich soils or at least to screen those soils in order to improve the relationships to the 
other soil components. This would be of significance for the classification of the IPO peat class 
but would certainly need to be investigated further. 

We also examined the usage of thermal band ratios for soil texture discrimination, as suggested 
by Salisbury and D’Aria (1992b). A ratio of ASTER bands 10 to 14 and 8.55 µm to 11 µm 
showed some improvement over the relationships found with only the 8.55 µm band. After 
eliminating soils with high organic matter and iron contents with a ratio of ASTER bands 10 to 
12, a logarithmic fit to the data showed only moderate improvement, with sand content 
explaining nearly 60 percent of the variation of ASTER 10/14 (Figure A.8). Our data set and 
specification for ASTER band 14 is slightly different than that used by Salisbury and D’Aria 
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(1992b) yet our results are comparable with theirs, although they obtain an r2 of 0.74 in their 
analysis. 
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Figure A.8.  a) Scatterplot showing the relationship of a ratio of ASTER bands 10 to 14 to 
the combined clay and silt content of all soils (Polynomial fit shown). b) Same as a) but soils 
with a ratio of ASTER bands 10 to 12 less than one have been screened. A logarithmic fit to 
the data is shown. 
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A.3.4 Decision Tree Analysis 

Finally, we have investigated the performance of our decision tree software in separating these 
three broad soil categories. These were input into the C5.0 program (Quinlan 1993) with all the 
VIIRS spectral bands and all samples were used for training. When using all samples for 
training, C5.0 produced a very simple decision tree with four terminal nodes and with an overall 
error of 4.7 percent. Figure A.9 below shows the output of the decision tree. It is interesting to 
note that only VIIRS bands M11 (2.25 µm), M14 (8.55 µm), and M15 (10.7 µm) are used to 
partition this data set. The two soils that are misclassified by this decision tree are samples 11 
and 43 which are quite different in reflectance characteristics from the other sandy or clayey 
soils (e.g. Figure A.6).  

It should be noted that all samples were used for training the tree so that the very good results 
obtained may be misleading. We also performed an analysis where 50 percent of the samples 
were used for training and generating the tree and the other half for testing. Because of the small 
number of samples we performed 10 separate tests using randomly selected samples for each 
case. For this analysis the mean classification error for the training data was 8.2 percent (4.7 
percent standard deviation), and 29.5 percent (9.5 percent standard deviation) on the testing data. 
These values are surprisingly good considering our previous regression analyses and are quite 
close to our threshold recognition accuracy. The number of soils in this analysis, however, is 
very small and thus the results presented here must be interpreted with caution. 

A similar type of analysis was performed on simulated AVHRR reflectances from the ASTER 
soils. It was hoped that results from this analysis could form the basis for future work on actual 
AVHRR imagery. Figure A.10 shows the decision tree generated from all samples. The errors 
(7.0 percent) are slightly higher than those obtained for VIIRS and again the decisions utilize 
only the thermal bands. Results from 10 different tests with 50 percent samples were also similar 
to those for the VIIRS bands although with a higher mean misclassification error (10.9 percent 
on training, 29.5 percent on testing data, with standard deviations of 4.4 and 6.67 percent, 
respectively). These results are again very encouraging but will need to be verified.  

The usage of thermal band ratios was also investigated. VIIRS band 11 to 13 and ASTER bands 
10 to 14 ratios were included in two separate analyses. The decision tree used neither ratio when 
all cases were used for training the tree. However, six out of ten decision trees using the 50 
percent sampling tests did use the VIIRS ratio, suggesting that this metric may be useful in 
addition to the individual spectral bands. Only two out of ten trees used the ASTER ratio. 

The final test of decision trees involved testing the usefulness of including two thermal bands 
such as ASTER 10 and 12, as opposed to only one at 8.55 µm. The decision trees produced with 
the ASTER thermal bands did not provide any accuracy improvements over the ones with the 
VIIRS band, and the trees produced used ASTER bands 10 and 12 only twice each and never 
together. This analysis suggests that the VIIRS 8.55 µm band is sufficient to separate sandy, 
loamy, and clayey soils. The small sample size, however, truly limits the generalization of these 
analyses to broader samples, and inter-comparisons such as those performed above may need to 
include more representative soil types. 
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Read 43 cases from viirs.data 
 
Decision tree: 
 
b12 <= 2.2072: Clay (3.0) 
b12 > 2.2072: 
:...b11 <= 8.1915: Loam (27.0) 
    b11 > 8.1915: 
    :...b12 > 5.5663: Loam (4.0/1.0) 
        b12 <= 5.5663: 
        :...b9 <= 44.786: Sand (5.0) 
            b9 > 44.786: Loam (4.0/1.0) 
 
Evaluation on training data (43 cases): 
 
     Decision Tree    
   ----------------   
   Size      Errors   
      5    2( 4.7%)    << 
 
    (a)   (b)   (c) <-classified as 
   ----  ----  ---- 
      5     1       (a): class Sand 
           33       (b): class Loam 
            1     3 (c): class Clay 

Figure A.9.  Output of C5.0 decision tree for 12 VIIRS bands. 

 

Read 43 cases from avhrr.data 
 
Decision tree: 
 
avhrr4 <= 2.220898: Clay (3.0) 
avhrr4 > 2.220898: 
:...avhrr4 <= 3.479473: Loam (25.0/1.0) 
    avhrr4 > 3.479473: 
    :...avhrr5 <= 2.43947: Sand (4.0) 
        avhrr5 > 2.43947: Loam (11.0/2.0) 
 
Evaluation on training data (43 cases): 
 
     Decision Tree    
   ----------------   
   Size      Errors   
      4    3( 7.0%)    << 
 
    (a)   (b)   (c) <-classified as 
   ----  ----  ---- 
      4     2       (a): class Sand 
           33       (b): class Loam 
            1     3 (c): class Clay 

Figure A.10.  Decision tree produced by using 5 AVHRR bands. 
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A.4 Soil Class Retrieval - Conclusions 

The results from these analyses are mixed. On the one hand, we find large unexplained soil 
reflectance variability at all bands analyzed yet the decision tree appears to perform relatively 
well. However, the number of samples analyzed is small and may not be representative of the 
thousands of soil types over the Earth. Additionally, the results produced here may not be 
applicable when using satellite reflectances because of a variety of non-trivial problems, 
including atmospheric absorption and correction, surface temperature, soil moisture, and the 
presence of particle coatings or desert varnish (Irons et al., 1989; Rivard et al., 1992; Kealy and 
Hook, 1993). 

The methods for soil type separation used here can only be characterized as areas of research 
with unproven and practically untested methodologies. Moreover, we have shown only results 
for three out of the six soil types and similar problems as those encountered here are anticipated 
for the other three soil types. Soil texture will not generally change very much over a short time 
scale. Is it justified to use significant resources to further develop methods to classify bare soil 
types on an operational basis for what really seems to be a relatively small gain? 
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